Answer:
The speed after being pulled is 2.4123m/s
Explanation:
The work realize by the tension and the friction is equal to the change in the kinetic energy, so:
(1)
Where:

Because the work made by any force is equal to the multiplication of the force, the displacement and the cosine of the angle between them.
Additionally, the kinetic energy is equal to
, so if the initial velocity
is equal to zero, the initial kinetic energy
is equal to zero.
Then, replacing the values on the equation and solving for
, we get:


So, the speed after being pulled 3.2m is 2.4123 m/s
Hahahahaha. Okay.
So basically , force is equal to mass into acceleration.
F=ma
so when F=ma , we get acceleration=6m/s/s
Force is doubled.
Mass is 1/3 times original.
2F=1/3ma
Now , we rearrange , and we get 6F=ma
So , now for 6 times the original force , we get 6 times the initial acceleration.
So new acceleration = 6*6= 36m/s/s
Answer : The final temperature is, 
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of ice = 
= specific heat of water = 
= mass of ice = 50 g
= mass of water = 200 g
= final temperature = ?
= initial temperature of ice = 
= initial temperature of water = 
Now put all the given values in the above formula, we get:


Therefore, the final temperature is, 
Answer:
.7934
Explanation:
Acceleration = change in velocity / change in time
A = 10.98
/ 13.84
A = .7934
Magnetic fields
Explanation:
The presence of magnetic fields best explains why a magnet can act a distance on other magnets or on objects containing certain metals.
- Magnetic fields are lines of forces around a bar magnet.
- These lines of forces attracts and repels other magnetic bodies and metallic bodies round it.
- Magnetic lines of forces originates at the north pole and enters in the south pole.
- Areas around a magnetic body are bounded by force fields.
- A magnet has permanent magnetic fields round it.
learn more:
Electromagnet brainly.com/question/2191993
#learnwithBrainly