1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aleks04 [339]
3 years ago
13

Isaac Newton’s investigations of gravity explained which of the following?

Physics
2 answers:
Leokris [45]3 years ago
8 0
"Gravity acts on all objects in the universe" is the one among the following choices given in the question that was explained by <span>Isaac Newton’s investigations of gravity. The correct option among all the options that are given in the question is the third option or option "C". I hope that the answer has helped you.</span>
Umnica [9.8K]3 years ago
4 0

C. Gravity acts on all objects in the universe.

Explanation:

Isaac Newton with his studies understood that the force of gravity acts on all objects with mass in the universe, and it is the same force that causes an apple to fall from a tree and that keeps the Earth in motion around the Sun.

Newtons also created a formula that allows us to calculate the force of gravity between two objects:

F=G\frac{m_1 m_2}{r^2}

where

G is the gravitational constant

m1 and m2 are the masses of the two objects

r is the separation between the two objects

You might be interested in
Do anyone k ow the answers?
OLga [1]
Hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
7 0
3 years ago
the lines from the boxes show the positions of two of the parts that are present in both cells in the boxes write the names of t
denis-greek [22]
Box 1 = cell membrane
Box 2 = cytoplasm
6 0
3 years ago
Two identical loudspeakers 2.00 m apart are emitting sound waves into a room where the speed of sound is 340 m/s. Abby is standi
Ganezh [65]

Answer:

242.85 Hz

Explanation:

For maximum intensity of sound, the path difference,ΔL = (n + 1/2)λ/2 where n = 0,1,2...

Since Abby is standing perpendicular to one speaker, the path length for the sound from the other speaker to him is L₁ = √(2.00² + 5.50²) = √(4.00 + 30.25) = √34.25 = 5.85 m.

The path difference to him is thus ΔL = 5.85 m - 5.50 m = 0.35 m.

Since ΔL = (n + 1/2)λ/2 and for lowest frequency n = 0,

ΔL = (n + 1/2)λ/2 = (0 + 1/2)λ/2 = λ/4

ΔL = λ = v/f and f = v/4ΔL where f = frequency of wave and v = velocity of sound wave = 340 m/s.

f = 340/(4 × 0.35) = 242.85 Hz

5 0
3 years ago
Consider the motion of a 4.00-kg particle that moves with potential energy given by U(x) = + a) Suppose the particle is moving w
gtnhenbr [62]

Correct question:

Consider the motion of a 4.00-kg particle that moves with potential energy given by

U(x) = \frac{(2.0 Jm)}{x}+ \frac{(4.0 Jm^2)}{x^2}

a) Suppose the particle is moving with a speed of 3.00 m/s when it is located at x = 1.00 m. What is the speed of the object when it is located at x = 5.00 m?

b) What is the magnitude of the force on the 4.00-kg particle when it is located at x = 5.00 m?

Answer:

a) 3.33 m/s

b) 0.016 N

Explanation:

a) given:

V = 3.00 m/s

x1 = 1.00 m

x = 5.00

u(x) = \frac{-2}{x} + \frac{4}{x^2}

At x = 1.00 m

u(1) = \frac{-2}{1} + \frac{4}{1^2}

= 4J

Kinetic energy = (1/2)mv²

= \frac{1}{2} * 4(3)^2

= 18J

Total energy will be =

4J + 18J = 22J

At x = 5

u(5) = \frac{-2}{5} + \frac{4}{5^2}

= \frac{4-10}{25} = \frac{-6}{25} J

= -0.24J

Kinetic energy =

\frac{1}{2} * 4Vf^2

= 2Vf²

Total energy =

2Vf² - 0.024

Using conservation of energy,

Initial total energy = final total energy

22 = 2Vf² - 0.24

Vf² = (22+0.24) / 2

Vf = \sqrt{frac{22.4}{2}

= 3.33 m/s

b) magnitude of force when x = 5.0m

u(x) = \frac{-2}{x} + \frac{4}{x^2}

\frac{-du(x)}{dx} = \frac{-d}{dx} [\frac{-2}{x}+ \frac{4}{x^2}

= \frac{2}{x^2} - \frac{8}{x^3}

At x = 5.0 m

\frac{2}{5^2} - \frac{8}{5^3}

F = \frac{2}{25} - \frac{8}{125}

= 0.016N

8 0
3 years ago
A person kicks a ball off of a 50m high cliff with a speed of 10 m/s. How long will it take the ball to hit the ground? * 7 poin
Musya8 [376]

Presumably, the ball is kicked parallel to the ground below the cliff, so its altitude <em>y</em> at time <em>t</em> is

y(t)=50\,\mathrm m-\dfrac12gt^2

where <em>g</em> = 9.80 m/s^2 is the acceleration due to gravity.

The ball hits the ground when <em>y</em> = 0:

0 = 50\,\mathrm m-\dfrac12gt^2

t^2=\dfrac{100\,\mathrm m}g

t=\dfrac{10}{9.80}\,\mathrm s\approx\boxed{3.2\,\mathrm s}

6 0
3 years ago
Other questions:
  • A rock rolls down a steep hill. Its intial velocity is 1 meter per second. By the time it reaches the bottom of the hill 30 seco
    9·1 answer
  • Why is the SI system a consistent system?
    12·2 answers
  • If there is no oxygen in outer space, and, at the same time, oxygen must be present for fire, where does the sun come from?​
    14·2 answers
  • A 1.00- and a 2.00- resistor are in parallel. What is the equivalent single resistance? ​
    7·1 answer
  • How does the friction get affected by the nature of surface?
    13·1 answer
  • Derive formula for pressure in any liquid
    7·1 answer
  • A man is using a fishing rod to catch fish in figure 1.
    13·1 answer
  • A 1000 kg boulder sits at the top of a 50-meter high cliff. Determine the amount of potential energy possessed by the boulder if
    15·2 answers
  • According to the law of universal gravitation, gravity is the force keeping objects in the universe in their relative positions.
    15·1 answer
  • Why do we "call it a day" when it's the end of the day/ night time?
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!