1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natka813 [3]
3 years ago
13

Three small spheres, having masses m1 = 1 kg, m2 = 3 kg, and m3 = 4 kg, are held fixed on the x axis in deep space where the eff

ects of earth's gravity can be neglected. They are positioned at x = 0, x = 3 m, and x = 6 m, respectively. What is the magnitude of net gravitational force on m2?

Physics
2 answers:
Vlad [161]3 years ago
6 0

Answer: F_{net} = 0.7411 N towards the mass m_{3}

Explanation: We know that the gravitational force is a long range force which is always attractive in nature.

Given that:

  • mass m_{1} = 1 kg
  • mass m_{2} = 3kg
  • mass m_{3} = 4kg

The masses are positioned on X-axis at the following points:

  • Position of mass m_{1}  x_{1} = 0
  • Position of mass m_{2}  x_{2} = 3
  • Position of mass m_{3}  x_{3} = 6

Mathematically:

<em>Gravitational force on mass </em>m_{2}<em> due to mass </em>m_{1}<em> is given by </em>

F_{21} = G \frac{m_{1}.m_{2}}{(r_{21})^2}...................(1)

  • where: (r_{21})^2= the radial distance between masses m_{2} & m_{1}=3

Similarly, g<em>ravitational force on mass </em>m_{2}<em> due to mass </em>m_{3}<em> is given by </em>

F_{23} = G \frac{m_{3}.m_{2}}{(r_{23})^2}............................(2)

  • where: (r_{23})^2= the radial distance between masses m_{2} & m_{3}=3

Now, put the respective values in the above equations.

F_{21} = 6.67 \times 10^{-11 }\times \frac{1\times 3}{3^2}

F_{21} = 2.2233\times 10^{-11} N

Again,

F_{23} = 6.67 \times 10^{-11 }\times \frac{1\times 4}{3^2}

F_{23} = 2.9644\times 10^{-11} N

∵Mass m_{2} is in the middle of the masses m_{3} & m_{1} therefore the forces  F_{23} & F_{21} will attract them in radially opposite direction.

∴F_{net} = F_{23} -F_{21} \\\\F_{net} = 2.9644-2.2233\\\\F_{net} = 0.7411 N towards the mass m_{3}

san4es73 [151]3 years ago
4 0

Answer:

The magnitude of the net force on m_{2} is 7.411\times 10^{- 11}\ N

Solution:

As per the question:

m_{1} = 1\ kg

m_{2} = 3\ kg

m_{3} = 4\ kg

Respective positions of the above mentioned masses are:

x = 0 m

x = 3 m

x = 6 m

Now,

We know that the gravitational force between two masses separated by some distance is given by:

F_{G} = \frac{GMm}{x^{2}}

Therefore. the net gravitational force on m_{2} is given by:

F_{G, net} = F_{G,2-3} - F_{G, 1-2}

F_{G, net} = \frac{Gm_{2}m_{3}}{x^{2}} - \frac{Gm_{1}m_{2}}{x^{2}}

F_{G, net} = \frac{G}{x^{2}}(m_{2}m_{3} - m_{1}m_{2})

where

G = Gravitational constant

F_{G, net} = \frac{6.67\times 10^{- 11}}{3^{2}}(4\times 3 - 1\times 2)

F_{G, net} = 7.411\times 10^{- 11}\ N

You might be interested in
A 7.0-kilogram cart, A, and a 3.0-kilogram cart, B, are initially held together at rest on a horizontal, frictionless surface. W
7nadin3 [17]
For this problem, we use the conservation of momentum as a solution. Since momentum is mass times velocity, then,

m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂'
where
v₁ and v₂ are initial velocities of cart A and B, respectively
v₁' and v₂' are final velocities of cart A and B, respectively
m₁ and m₂ are masses of cart A and B, respectively

(7 kg)(0 m/s) + (3 kg)(0 m/s) = (7 kg)(v₁') + (3 kg)(6 m/s)
Solving for v₁',
v₁' = -2.57 m/s

<em>Therefore, the speed of cart A is at 2.57 m/s at the direction opposite of cart B.</em>
7 0
3 years ago
Calculate the kinetic energy in joules of an automobile weighing 2135 lb and traveling at 55 mph. (1 mile = 1.6093 km, 1 lb = 45
victus00 [196]
<span>Let's convert the speed to m/s: speed = (55 mph) (1609.3 m / mile) (1 hour / 3600 seconds) speed = 24.59 m/s Let's convert the mass to kilograms: mass = (2135 lb) (0.45359 kg / lb) mass = 968.4 kg We can find the kinetic energy KE: KE = (1/2) m v^2 KE = (1/2) (968.4 kg) (24.59 m/s)^2 KE = 292780 joules The kinetic energy of the automobile is 292780 joules.</span>
4 0
3 years ago
Two wheels are identical but wheel b is spinning with twice the angular speed of wheel
Murljashka [212]
<span>If two wheels are exactly the same but spin at different speeds, wheel b is twice te speed of wheel a, it is possible to find the ratio of the magnitude of radial acceleration at a singular point of the rim on wheel be to the spot is four.</span>
6 0
2 years ago
How are longitudinal and transverse waves different?
Natalija [7]

Answer:

A longitudinal wave is a wave where the movement of the medium is in the same direction as the wave. On the other hand, a transverse wave is a wave where the movement of the medium is at a right angle to the wave direction.

Explanation:i got this right on a quiz so i know its right

3 0
3 years ago
Which three of the following are characteristics of ionic bonding?
Lyrx [107]
Gains at least one nutrient
7 0
3 years ago
Other questions:
  • A 2,000 kg rocket is launched 12 km straight up at a constant acceleration into the sky at which point the rocket is travelling
    9·1 answer
  • Which of the following is released by trees into the atmosphere?
    13·1 answer
  • Which of the following statements are true of solar energy?
    6·1 answer
  • When doing numerical calculations involving temperature, you need to pay particular attention to the temperature scale you are u
    14·1 answer
  • A rock is dropped from a 110-m-high cliff. How long does it take to fall (a) the first 55.0 m and (b) the second 55.0 m?
    11·1 answer
  • Decide if each description below is an example of a change caused by energy. From the drop-down menu, choose "IS" if it is an ex
    7·1 answer
  • HELP!!!<br><br> i’ve been stuck at this question for a whole day
    10·2 answers
  • Which element is located in period 3 of the periodic table?
    14·1 answer
  • Why might a food item such as bread not necessarily be a consumer good in all economic scenarios ?
    6·1 answer
  • What was the first and largest asteroid to be identified?.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!