Answer:
1.26 × 10^-8 M
Explanation:
We are given;
Number of moles of mercury (i) chloride as 0.000126 μmol
Volume is 100 mL
We are required to calculate the concentration of the solution.
We need to know that;
Concentration is also known as molarity is given by;
Molarity = Number of moles ÷ Volume
Number of moles = 1.26 × 10^-10 Moles
Volume = 0.01 L
Therefore;
Concentration = 1.26 × 10^-10 Moles ÷ 0.01 L
= 1.26 × 10^-8 M
Thus, the molarity of the solution is 1.26 × 10^-8 M
That is actually physics because it talks about motion.
Answer:
a. neutral
b. salts
c. salt
Explanation:
Organic salts are a dense number of ionic compounds with innumerable characteristics. They are previously derived from an organic compound, which has undergone a transformation that allows it to be a carrier of a charge, and that in addition, its chemical identity depends on the associated ion.
Organic salts are usually stronger acids or bases than inorganic salts. This is because, for example, in the amine salts, it has a positive charge due to its bond with an additional hydrogen: A + -H. Then, in contact with a base, donate the proton to be a neutral compound again
RA + H + B => RA + HB
H belongs to A, but it is written as it is involved in the neutralization reaction.
On the other hand, RA + can be a large molecule, unable to form solids with a crystalline network stable enough with the hydroxyl anion or oxyhydrile OH–.
When this is so, salt RA + OH– behaves as a strong base; even as basic as NaOH or KOH
<span>the chemical equation will be Ni(OH)2(s)------>heat---> NiO(s) + H2O(g)
</span><span>we know that the heat supplied to decompose the compound.In the result the product H2O is assumed to be in the vapor state so that is gas.
hope it helps
</span>
To get the ∆S of the reaction, we simply have to add the ∆S of the reactants and the ∆S of the products. Then, we get the difference between the ∆S of the products and the ∆S of the products. If the <span>∆S is negative, then the reaction spontaneous. If the otherwise, the reaction is not spontaneous.</span>