1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MA_775_DIABLO [31]
3 years ago
6

A student is running at her top speed of 5.3 m/s to catch a bus, which is stopped at the bus stop. When the student is still a d

istance 40.7 m from the bus, it starts to pull away, moving with a constant acceleration of 0.168 m/s^2 . a) For how much time does the student have to run at 5.3 m/s before she overtakes the bus?
b) For what distance does the student have to run at 5.3 m/s before she overtakes the bus?
c) When she reaches the bus, how fast is the bus traveling?
d) If the student's top speed is 2.00 m/s , will she catch the bus?
e) What is the minimum speed the student must have to just catch up with the bus?
f) For what time does she have to run in that case?
g) For what distance does she have to run in that case?
Physics
1 answer:
miv72 [106K]3 years ago
8 0

Answer:

a) The student has to run for 8.9 s.

b) The student has to run for 47 m.

c) The bus is traveling at 1.5 m/s when the student reaches the bus.

d) No, she will not catch the bus running at 2.00 m/s.

e) The minimum speed the student must have to catch the bus is 3.7 m/s.

f)  The student has to run for 21.3 s if she runs at 3.7 m/s to catch the bus.

g) She has to run 79 m to catch the bus running at 3.7 m/s

Explanation:

The equations for a straight movement are:

With constant acceleration:

x = x0 + v0 * t + 1/2 * a * t²

v = v0 + a *t

With constant velocity (a = 0):

x = x0 + v * t

Where

x = position at time t

x0 = initial position

v0 = initial velocity

v = velocity

a = acceleration

t = time

a) When the student catches the bus, the position of the bus and the student are the same:

x student = x bus

The student moves with constant speed while the bus has a constant acceleration. If the origin of the reference system is located where the student starts running, then, x0 student = 0 and x0 bus = 40.7 m. Since the bus starts from rest, v0 = 0.

x student = v * t

x bus =  x0 + v0 * t + 1/2 * a * t² = x0 + 1/2 * a * t²

x student = x bus

v * t = x0 + 1/2 * a * t²

Replacing with data:

5.3 m/s * t = 40.7 m + 1/2 (0.168 m/s²) * t²

0 = 40. 7 m - 5.3 m/s * t + 0.084 m/s²¨* t²

Solving the quadratic equation:

t = 8.9 s and t = 54.1 s

We discard the higher value because if the student catches the bus at 8.9 s, she will not catch it again at 54.1 s.

The student has to run for 8.9 s.

b) Using the equation for position of the student:

x = v * t = 5.3 m/s * 8.9 s =47 m

The student has to run for 47 m

c) Using the equation for velocity of the bus:

v = v0 + a * t = 0 m/s + 0.168 m/s² * 8.9 s

v = 1.5 m/s

The bus is traveling at 1.5 m/s when the student reaches the bus

d) The quadratic equation after equalizing the position of the student and the position of the bus would be:

0 = 40. 7 m - <u>2 m/s</u> * t + 0.084 m/s²¨* t²

If we solve this using the formula to obtain the roots of the parabola we will obtain:

\frac{-b+\sqrt{b^{2}-4ac} }{2a} = \frac{2+\sqrt{4- 4*40.7*0.084}}{2*0.084}

Since the term \sqrt{4-4*40.7*0.084} = \sqrt{-9,7} is not defined in the real numbers, there is no "t" such as the equation of the parabola equals 0. The parabola has no roots. Then, the student will not catch the bus if she runs at 2.00 m/s.

e) The term inside the square root in \frac{-b+\sqrt{b^{2}-4ac} }{2a}

has to be positive or 0, then:

b² - 4* a* c ≥ 0

Notice that "b" is the speed at which the student runs, "a" is 0.084 and "c" is 40. 7 ( see the equation of the parabola obtained in a)). Then:

b² ≥ 4 * a * c

b ≥ √ 4 * a * c  

b ≥ √ 4 * 0.084 * 40.7

b ≥ 3.7 m/s

The minimum speed the student must have to catch the bus is 3.7 m/s.

f) Now we have to solve the quadratic equation obtained in a), but using -3.7 as value of "b". Solving the quadratic equation, we will obtain the values of t = 21.3 s and 22.7 s. Again, we discard the higher value.

The student has to run for 21.3 s if she runs at 3.7 m/s to catch the bus.

g) The distance is given by the equation for the position of the student:

x = v * t = 3.7 m/s * 21.3 s = 79 m.

She has to run 79 m to catch the bus.

You might be interested in
The amount of potential energy possessed by an elevated object is equal to
Sedbober [7]

Answer:

Potential energy of the object will be equal to mgh

Explanation:

Let the mass of the object is m

Acceleration due to gravity is gm/sec^2

Let the object is released from height h

We have to find the potential energy

Potential energy is of an object released from height h is equal to

U=mgh, here m is mass, g is acceleration due to gravity and h is height from which object is released.

4 0
4 years ago
Star Twinkle but planet do not why​
V125BC [204]

Answer:The total variation in the amount of light entering our eye is not dectiable therefore planets do not twinkle.

Explanation:Stars twinkle, while planets (usually) shine steadily. Why? Stars twinkle because … they're so far away from Earth that, even through large telescopes, they appear only as pinpoints. ... Planets shine more steadily because … they're closer to Earth and so appear not as pinpoints, but as tiny disks in our sky.As light from a star races through our atmosphere, it bounces and bumps through the different layers, bending the light before you see it. Since the hot and cold layers of air keep moving, the bending of the light changes too, which causes the star's appearance to wobble or twinkle.

7 0
3 years ago
A proton and an alpha particle are momentarily at rest at adistance r from each other. They then begin to move apart.Find the sp
Arte-miy333 [17]

Answer:

The unknown quantities are:

E and F

The final velocity of the proton is:

√(8/3) k e^2/(m*r)

Explanation:

Hello!

We can solve this problem using conservation of energy and momentum.

Since both particles are at rest at the beginning, the initial energy and momentum are:

Ei = k (q1q2)/r

pi = 0

where k is the coulomb constant (= 8.987×10⁹ N·m²/C²)

and q1 = e and q2 = 2e

When the distance between the particles doubles, the energy and momentum are:

Ef = k (q1q2)/2r + (1/2)m1v1^2 + (1/2)m2v2^2

pf = m1v1 + m2v2

with m1 = m,   m2 = 4m,    v1=vf_p,    v2 = vf_alpha

The conservation momentum states that:

pi = pf      

Therefore:

m1v1 + m2v2 = 0

That is:

v2 = (1/4) v1

The conservation of energy states that:

Ei = Ef

Therefore:

k (q1q2)/r = k (q1q2)/2r + (1/2)m1v1^2 + (1/2)m2v2^2

Replacing

      m1 =  m, m2 = 4m, q1 = e, q2 = 2e

      and   v2 = (1/4)v1

We get:

(1/2)mv1^2 = k e^2/r + (1/2)4m(v1/4)^2 =  k e^2/r + (1/8)mv1^2

(3/8) mv1^2 = k e^2/r

v1^2 = (8/3) k e^2/(m*r)

3 0
3 years ago
Networks of interconnected wireless devices that are embedded into the physical environment to provide measurements of many poin
bazaltina [42]

Wireless sensor networks

Explanation:

Networks of interconnected wireless devices that are embedded into the physical environment to provide measurements of many points over a large spaces are called Wireless sensor networks.

They are very useful in obtaining real-time data and information about every day life.

  • The internet of things greatly relies on the use of wireless sensor networks in devices and gadgets to better and improve life.
  • They are constantly in use by various organizations and bodies.
  • Wireless sensor networks can be designed to collect specific scientific data or even more.

learn more:

Connecting IoT devices brainly.com/question/11028028

#learnwithBrainly

6 0
4 years ago
WHAT ELEMENT CAN FORM A POSITIVE ION
Svetach [21]
Any metal element can form a positive ion because they lose electrons to become stabilized
6 0
4 years ago
Other questions:
  • Electric energy is generated at a nuclear power plant using which type<br> of nuclear reaction
    13·2 answers
  • How does a heat pump resemble a refrigeration system?
    12·1 answer
  • There are _________ constellations in the entire sky.
    12·1 answer
  • A meter stick balances at the 50.0-cm mark. If a mass of 50.0 g is placed at the 90.0-cm mark, the stick balances at the 61.3-cm
    13·2 answers
  • A parallel-plate capacitor is formed from two 9.1 cm-diameter electrodes spaced 1.3 mm apart. The electric field strength inside
    6·1 answer
  • 7. A series circuit contains a generator, two devices, and connecting wires. The resistances of the two devices are 15 ohms and
    9·2 answers
  • The kinetic energy of the air molecules inside the cave is the kinetic energy of the air molecules outside the cave.
    6·2 answers
  • If a ball is thrown vertically upward with a velocity of 128 ft/s, then its height after t seconds is s = 128t − 16t2.
    13·1 answer
  • please read the question and answer. it is quite complicated so someone clever please reply. many thanks :)​
    14·1 answer
  • Why do i look ugly in some mirrors but pretty in others? Which is more accurate?​
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!