1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
soldi70 [24.7K]
3 years ago
14

Yo can someone find me an e-boy?

Engineering
1 answer:
Vera_Pavlovna [14]3 years ago
4 0
I got a friend how old are you and are you ok dating a bi guy
You might be interested in
Water enters a centrifugal pump axially at atmospheric pressure at a rate of 0.12 m3
goldenfox [79]

Answer:

Water enters a centrifugal pump axially at atmospheric pressure at a rate of 0.12 m3/s and at a velocity of 7 m/s, and leaves in the normal direction along the pump casing, as shown in Fig. PI3-39. Determine the force acting on the shaft (which is also the force acting on the bearing of the shaft) in the axial direction.

Step-by-step solution:

Step 1 of 5

Given data:-

The velocity of water is .

The water flow rate is.

3 0
3 years ago
Expalin the application of diesel cycle in detail.
mars1129 [50]

Explanation:

Diesel cycle:

        All diesel engine work on diesel cycle .In diesel cycle there are four process .These processes are as follows

1. Adiabatic reversible compression

2.Heat addition at constant pressure

3.Adiabatic reversible expansion

4.Constant volume heat rejection

In general compression ratio in diesel engine is high as compare to petrol engine.But the efficiency of diesel cycle is less as compare to petrol cycle for same compression ratio.

Applications of diesel cycle:

Generally diesel cycle used for heavy vehicle or equipment because heavy vehicle or equipment is required high initial torque.So this cycle have lots of applications such as in industrial machining,in trucks,power plant,in mining ,in defense or military,large motors ,compressor and pump etc.

   

5 0
3 years ago
A piston-cylinder device contains 0.1 m3 of liquid water and 0.9 m² of water vapor in equilibrium at 800 kPa. Heat is transferre
docker41 [41]

Answer:

Initial temperature = 170. 414 °C

Total mass = 94.478 Kg

Final volumen = 33.1181 m^3

Diagram  = see picture.

Explanation:

We can consider this system as a close system, because there is not information about any output or input of water, so the mass in the system is constant.  

The information tells us that the system is in equilibrium with two phases: liquid and steam. When a system is a two phases region (equilibrium) the temperature and pressure keep constant until the change is completed (either condensation or evaporation). Since we know that we are in a two-phase region and we know the pressure of the system, we can check the thermodynamics tables to know the temperature, because there is a unique temperature in which with this pressure (800 kPa) the system can be in two-phases region (reach the equilibrium condition).  

For water in equilibrium at 800 kPa the temperature of saturation is 170.414 °C which is the initial temperature of the system.  

to calculate the total mass of the system, we need to estimate the mass of steam and liquid water and add them. To get these values we use the specific volume for both, liquid and steam for the initial condition. We can get them from the thermodynamics tables.

For the condition of 800 kPa and 170.414 °C using the thermodynamics tables we get:

Vg (Specific Volume of Saturated Steam) = 0.240328 m^3/kg

Vf (Specific Volume of Saturated Liquid) = 0.00111479 m^3/kg

if you divide the volume of liquid and steam provided in the statement by the specific volume of saturated liquid and steam, we can obtain the value of mass of vapor and liquid in the system.

Steam mass = *0.9 m^3 / 0.240328 m^3/kg = 3.74488 Kg

Liquid mass = 0.1 m^3 /0.00111479 m^3/kg = 89.70299 Kg  

Total mass of the system = 3.74488 Kg + 89.70299 Kg = 93,4478 Kg

If we keep the pressure constant increasing the temperature the system will experience a phase-change (see the diagram) going from two-phase region to superheated steam. When we check for properties for the condition of P= 800 kPa and T= 350°C we see that is in the region of superheated steam, so we don’t have liquid water in this condition.  

If we want to get the final volume of the water (steam) in the system, we need to get the specific volume for this condition from the thermodynamics tables.  

Specific Volume of Superheated Steam at 800 kPa and 350°C = 0.354411 m^3/kg

We already know that this a close system so the mass in it keeps constant during the process.

 

If we multiply the mass of the system by the specific volume in the final condition, we can get the final volume for the system.  

Final volume = 93.4478 Kg * 0.354411 m^3/kg = 33.1189 m^3

You can the P-v diagram for this system in the picture.  

For the initial condition you can calculate the quality of the steam (measure of the proportion of steam on the mixture) to see how far the point is from for the condition on all the mix is steam. Is a value between 0 and 1, where 0 is saturated liquid and 1 is saturated steam.  

Quality of steam = mass of steam / total mass of the system

Quality of steam = 3.74488 Kg /93.4478 Kg = 0,040 this value is usually present as a percentage so is 4%.  

Since this a low value we can say that we are very close the saturated liquid point in the diagram.  

6 0
3 years ago
The drag coefficient of a car at the design conditions of 1 atm, 25°C, and 90 km/h is to be determined experimentally in a large
SIZIF [17.4K]

Answer: 0.288

Explanation:

Given

Pressure of the car, P = 1 atm

Temperature of the car, T = 25° C

Speed of the car, v = 90 km/h = 90*1000/3600 = 25 m/s

Height of the car, h = 1.25 m

Width of the car, b = 1.65 m

Force acting on the far, F = 220 N

Drag coefficient, C(d) = ?

Using our table A-9, we can trace that the density of air ρ, at the given temperature and pressure of 25 °C and 1 atm, is 1.184 kg/m³

Area = h *b

Area = 1.25 * 1.65

Area = 2.0625 m²

Now we solve for the drag coefficient using the formula

C(d) = F / (1/2 * ρ * A * v²)

C(d) = 220 / (0.5 * 1.184 * 2.0625 * 25²)

C(d) = 220 / (1.221 * 625)

C(d) = 220 / 763.125

C(d) = 0.288

Therefore, the drag coefficient is 0.288

3 0
2 years ago
The terms batten seam, standing seam, and flat seam all describe types of:
abruzzese [7]

Answer:

<em> (A) architectural sheet metal roofing</em>

Explanation:

 By the <em>name itself we can judge</em> that the <em>'Architectural sheet metal roofing'</em> is a <em>kind of metal roofing</em>.

And these type of metal roofing is primarily used for small and big houses, small buildings and as well as in a building that is for commercial use they can be totally flat as well as little bit sloped.  

And the words similarly like<em> </em><em>batten and standing seam</em>, and <em>flat seam all tells us that these are the types of</em> architectural sheet metal roofing.

5 0
2 years ago
Other questions:
  • Why should engineers avoid obvious patterns?
    13·2 answers
  • Describe the steps, tools, and technology needed in detail and
    12·1 answer
  • If my friend have the corona what do I do
    11·2 answers
  • What's resistance in an electrical circuit? 1) Opposition to the flow of electricity 2) The ability of electricity to do work 3)
    11·1 answer
  • This is hard please help me you will give brainlist
    5·2 answers
  • Cite another example of information technology companies pushing the boundaries of privacy issues; apologizing, and then pushing
    9·1 answer
  • Bob would like to run his house off the grid, therefore he needs to find out how many solar panels and batteries he needs to buy
    12·1 answer
  • To understand the concept of moment of a force and how to calculate it using a scalar formulation.
    9·1 answer
  • 3. Briefly explain the conduction mechanism in metals?​
    10·1 answer
  • Technician A says the compressor is the dividing line of the refrigeration system, low- to high-side. Technician B says the expa
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!