Answer: the correct answer is D
Answer:
The p-n junction is a region formed when a p -type semiconductor material is joined to an n-type semiconductor material
Explanation:
The p type semiconductor has holes as its majority charge carriers making it positively charged while the n –types has an overall negative charge. At the junction the holes move towards the electron until such a time when there is a balance in charges from both materials, which leads to the formation of the depletion zone as shown in the attachment below
Answer:
First you have to separate real and imaginary parts of Tan(x+iy)=Tan(z)=sin(z)/cos(z)
sinz=sin(x+iy)=sinxcos(iy)+cosxsin(iy)=sinxcoshy-icosx sinhy
cosz=cos(x+iy)=cosxcos(iy)-sinxsin(iy)=cosxcoshy−isinxsinhy
Now if you plug in Tan(z) and simplify (it is easy!) you get
Tan(z)=(sin(2x)+isinh(2y))/(cos(2x)+cosh(2y))= A+iB.
This means that
A=sin(2x)/(cos(2x)+cosh(2y)) and B= sinh(2y)/(cos(2x)+cosh(2y))
Now,
A/B=sin(2x)/sinh(2y)
If any questions, let me know.
Answer:
Explanation:
class Pet:
def __init__(self):
self.name = ''
self.age = 0
def print_info(self):
print('Pet Information:')
print(' Name:', self.name)
print(' Age:', self.age)
class Dog(Pet):
def __init__(self):
Pet.__init__(self)
self.breed = ''
def main():
my_pet = Pet()
my_dog = Dog()
pet_name = input()
pet_age = int(input())
dog_name = input()
dog_age = int(input())
dog_breed = input()
my_pet.name = pet_name
my_pet.age = pet_age
my_pet.print_info()
my_dog.name = dog_name
my_dog.age = dog_age
my_dog.breed = dog_breed
my_dog.print_info()
print(' Breed:', my_dog.breed)
main()