Answer:
0.08kg/s
Explanation:
For this problem you must use 2 equations, the first is the continuity equation that indicates that all the mass flows that enter is equal to those that leave the system, there you have the first equation.
The second equation is obtained using the first law of thermodynamics that indicates that all the energies that enter a system are the same that come out, you must take into account the heat flows, work and mass flows of each state, as well as their enthalpies found with the temperature.
finally you use the two previous equations to make a system and find the mass flows
I attached procedure
It would have environmental and societal impacts
Answer:
critical stress = 595 MPa
Explanation:
given data
fracture toughness = 74.6 MPa-
crack length = 10 mm
f = 1
solution
we know crack length = 10 mm
and crack length = 2a as given in figure attach
so 2a = 10
a = 5 mm
and now we get here with the help of plane strain condition , critical stress is express as
critical stress =
......................1
put here value and we get
critical stress =
critical stress = 595 MPa
so here stress is change by plane strain condition because when plate become thinner than condition change by plane strain to plain stress.
plain stress condition occur in thin body where stress through thickness not vary by the thinner section.