Answer:
6.19 x
m/
Explanation:
For this exercise we need to sum the forces on the y-axis and x-axis as follows:
∑
= N - mg = m.
= 0
From the exercise, we deduce there is no motion in y-axis, so:
N = mg
Then for x-axis we have:
∑
= H -
= m.
= 0
Now, from the exercise we deduce that we are looking for the greatest static friction which means to have the maximun static friction to start moving, so at this point the acceleration is zero, so we can find horizontal force (H), which then will act in the airplane to move it. Therefore we have:
H =
=
=
N =
mg
H = (0.76)(84Kg)(9.8m/
)
H = 625.63 N
Now we apply this force to the weight of the plane to find the greatest acceleration the mann can give to start moving the plane.
a =
= 
a = 
a = 6.19 x
m/
Answer:
90J
Explanation:
The only time work is being done is when he lifts the box off the ground. Therefore, using the work formula, 2 x 45, you get 90J. Hope this helps someone.
Answer:
120 is the correct answer
Green is reflected off of most plant leaves.