Answer: First you must convert pound in kilogram, and feet in meter
Explanation:
To calculate momentum we use .
p=m*V
mass-m
speed-V
distance and time are used to calculate velocity(speed)
You are given :
mass- in pounds
for distance - in feet
before you do any calculation first you have to convert pounds in kilograms
and feet in meters.
Answer:
P.E = 0.068 J = 68 mJ
Explanation:
First we need to find the height attained by the ball toy. For this purpose, we will be using 3rd equation of motion:
2gh = Vf² - Vi²
where,
g = -9.8 m/s² (negative sign due to upward motion)
h = height attained by the ball toy = ?
Vf = Final Velocity = 0 m/s (since it momentarily stops at the highest point)
Vi = Initial Velocity = 3 m/s
Therefore,
2(-9.8 m/s²)h = (0 m/s)² - (3 m/s)²
h = (9 m²/s²)/(19.6 m/s²)
h = 0.46 m
Now, the gravitational potential energy of ball at its peak is given by the following formula:
P.E = mgh
P.E = (0.015 kg)(9.8 m/s²)(0.46 m)
<u>P.E = 0.068 J = 68 mJ</u>
Answer:In a series circuit, adding more resistors increases total resistance and thus lowers current. But the opposite is true in a parallel circuit because adding more resistors in parallel creates more choices and lowers total resistance. If the same battery is connected to the resistors, current will increase.
Explanation:
There are three forces acting on the book.
1. Force due to gravity
2. Force exerted downward by the hamster
3. Normal Force in reaction to the downward forces
Since the book is not moving, the net force is zero. The summation of all forces must be zero. Then we could find the normal force which is unknown (denoted as x).
∑F = -(4 kg)(9.81 m/s2) - 3 N + x =0
∑F = -39.24 N - 3N + x =0
x = 42 N
Therefore, the normal force is 42 N.