A. Average speed is weighted mean (1 × 2 + 2 × 3 + 3 × 5 + 4 × 7 + 3 × 9 + 2 × 12.5)/15 = (2 + 6 + 15 + 28 + 27 + 25)/15 = 103/15 = 6.867 b. RMS is square root of 1/15 times sum of squares of speeds Sum of squares is 4 + 9 + 9 + 25 + 25 + 25 + 49 + 49 + 49 + 49 + 81 + 81 + 81 +156.25 + 156.25 = 848.5
c. RMS speed = √(848.5/15) = 7.521
Most likely the speed is the peak in the speed distribution, which is 7.
It depends where you are.
-- If you weigh 120 pounds on the Moon,
then your mass is 329.1 kilograms.
-- If you weigh 120 pounds on Mars,
then your mass is 143.8 kilograms.
-- If you weigh 120 pounds on the Earth,
then your mass is 54.4 kilograms.
Answer:
Final speed of the train is 7.5 m/s
Explanation:
It is given that,
Uniform acceleration of the train is, a = 1.5 m/s²
It starts from rest and travels for 5.0 s. We have to find the final velocity of the train. By using first equation of motion as :

Here, train starts from rest so, u = 0
v = 7.5 m/s
So, the final velocity of the train is 7.5 m/s. Hence, this is the required solution.
Answer: An equation is missing in your question below is the missing equation
a) ≈ 8396
b) 150 nm/k
Explanation:
<u>A) Determine the number of Oscillators in the black body</u>
number of oscillators = 8395
attached below is the detailed solution
<u>b) determine the peak wavelength of the black body </u>
Black body temperature = 20,000 K
applying Wien's law / formula
λmax = b / T ------ ( 1 )
T = 20,000 K
b = 3 * 10^6 nm
∴ λmax = 150 nm/k