Answer:
x = 0.775m
Explanation:
Conceptual analysis
In the attached figure we see the locations of the charges. We place the charge q₃ at a distance x from the origin. The forces F₂₃ and F₁₃ are attractive forces because the charges have an opposite sign, and these forces must be equal so that the net force on the charge q₃ is zero.
We apply Coulomb's law to calculate the electrical forces on q₃:
(Electric force of q₂ over q₃)
(Electric force of q₁ over q₃)
Known data
q₁ = 15 μC = 15*10⁻⁶ C
q₂ = 6 μC = 6*10⁻⁶ C
Problem development
F₂₃ = F₁₃
(We cancel k and q₃)

q₂(2-x)² = q₁x²
6×10⁻⁶(2-x)² = 15×10⁻⁶(x)² (We cancel 10⁻⁶)
6(2-x)² = 15(x)²
6(4-4x+x²) = 15x²
24 - 24x + 6x² = 15x²
9x² + 24x - 24 = 0
The solution of the quadratic equation is:
x₁ = 0.775m
x₂ = -3.44m
x₁ meets the conditions for the forces to cancel in q₃
x₂ does not meet the conditions because the forces would remain in the same direction and would not cancel
The negative charge q₃ must be placed on x = 0.775 so that the net force is equal to zero.
The answer is C. The mass of the platinum sample is greater than the mass of the lead sample. As I explained in a previous answer, if they are the same volume, but one is heavier, then it must be more dense. In this particular example, the platinum is more dense than the lead, and therefore has more mass.
The water cycle is all about storing water and moving water on, in, and above the Earth. Although the atmosphere may not be a great storehouse of water, it is the superhighway used to move water around the globe. Evaporation and transpiration change liquid water into vapor, which ascends into the atmosphere due to rising air currents. Cooler temperatures aloft allow the vapor to condense into clouds and strong winds move the clouds around the world until the water falls as precipitation to replenish the earthbound parts of the water cycle. About 90 percent of water in the atmosphere is produced by evaporation from water bodies, while the other 10 percent comes from transpiration from plants.
There is always water in the atmosphere. Clouds are, of course, the most visible manifestation of atmospheric water, but even clear air contains water—water in particles that are too small to be seen. One estimate of the volume of water in the atmosphere at any one time is about 3,100 cubic miles (mi3) or 12,900 cubic kilometers (km3). That may sound like a lot, but it is only about 0.001 percent of the total Earth's water volume of about 332,500,000 mi3 (1,385,000,000 km3), If all of the water in the atmosphere rained down at once, it would only cover the globe to a depth of 2.5 centimeters, about 1 inch.
Dont where socks or stand on carpet while working on a computer, also dont set components on carpet.