0.77 m/s2 directed 35° south of west
net force = (-17,-12)
net force = mass * acceleration
(-17,-12) = 27 * (x-acceleration,y-acceleration)
(x-acceleration,y-acceleration) = (-17/27,-12/27) = (-0.629629629..., -0.444...)
angle of acceleration = tan^-1 (-0.444.../-0.629629...) = 35.21759 degrees below negative x-axis.
magnitude of acceleration = sqrt((-0.629629...)^2 + (-0.444...)^2) = 0.77069 (5dp)
The dens or the odontoid process of the axis or the second cervical spine forms a pivot point with the atlas or the first cervical vertebrae that is responsible for the nodding and the rotational movements of the head. This is reinforced by ligaments and the atlanto-occipital joint that allows the head to make a nodding or up and down movement on the vertebral column.
Tom used more Force but over a shorter distance. Tom and Claudia both did the same amount of work.
P = V^2 / R.
So, 3.3^2 / 0.025 = 435.6W.
Note, you can get the power equation from:
P = V*I. Also, I = V/R.
Substituting V/R in for I in the 1st equation, you get P = V^2 / R.
Higher wind speeds would increase the amount of electricity generated by a wind turbine.
<h3>What is a power plant?</h3>
A power plant is an industrial structure that generates electricity. The majority of power plants are linked to the electrical grid.
Stronger winds produce greater power because they enable the blades to revolve more quickly. Greater mechanical and electrical power from the generator result from faster spinning.
Hence, higher wind speeds would increase the amount of electricity generated by a wind turbine.
To learn more about the power plant, refer to the link;
brainly.com/question/7670779
#SPJ1