Silicon, it's bring brother would be the prime candidate, although its compounds are notably different from those of carbon.
Answer:
the answer is A
I made a chart for AP chem if you want to refer to it.
Answer:
See explanation
Explanation:
For this question, we have to remember the effect of an atom with high <u>electronegativity</u> as "Br". If the "Br" atom is closer to the carboxylic acid group (COOH) we will have an <u>inductive effect</u>. Due to the electronegativity of Br, the electrons of the C-H bond would be to the Br, then this bond would be <u>weaker</u> and the compound will be more acid (because is easier to produce the hydronium ion
).
With this in mind, for A in the last compound, we have <u>2 Br atoms</u> near to the acid carboxylic group, so, we will have a high inductive effect, then the C-H would be weaker and we will have <u>more acidity</u>. Then we will have the compound with only 1 Br atom and finally, the last compound would be the one without Br atoms.
In B, the difference between the molecules is the <u>position</u> of the "Br" atom in the molecule. If the Br atom is closer to the acid group we will have a <u>higher inductive effect</u> and more <u>acidity</u>.
See figure 1
I hope it helps!
The answer is homogeneous mixture. It is a mixture which has uniform composition and properties all throughout. Mixtures can be separated by physical processes. Mixtures are systems that consist of two or more substances which are mixed but not chemically combined.
Answer;
-Two chlorine atoms
Explanation;
A barium atom attains a stable electron configuration when it bonds with two chlorine atoms.
-Barium is an alkaline earth metal, in group two of the periodic table. Like other alkaline earth metal it has a valency of two which means it reacts by loosing two electrons.
-Chlorine on the other hand is a halogen (group seven element) it reacts by gaining an electron, thus two chlorine atoms will require two electrons. Therefore, Barium would attain a stable configuration by loosing two electrons to two chlorine atoms.