According to the task there should be the graph that supports Sally's hike, but after looking on the options it seems that Sally doesn't walks at a constant rate and there is the negative option that coincides with my thoughts. So, I bet the false statement is the third option represented in the scale above.
The data given in the bar graph is valid because it follows the law of conservation of energy, since the GPE at top of 2nd hill plus KE at top of 2nd hill equals KE at bottom of 1st hill.
<h3>What is law of conservation of energy?</h3>
The law of conservation of energy states that energy can neither be created nor destroyed but can be transformed from one form to another.
Based on the law of conservation of energy, kinetic energy of a roller coaster can be converted into potential energy of the roller coaster and vice versa.
ΔK.E = ΔP.E
where;
- ΔK.E is change in kinetic energy
- ΔP.E is change in potential energy
The kinetic energy of the coaster is greatest at the bottom of the hill, as the coaster moves upward, the kinetic energy decreases and will be converted into potential energy. The potential energy of the coaster increases as the coaster moves up the hill and will become maximum at the highest point of the hill.
From the given data;
GPE at top of 2nd hill + KE at top of 2nd hill = KE at bottom of 1st hill
Learn more about conservation of energy here: brainly.com/question/166559
#SPJ1
Small evidence is also called trace evidence.
In this question, you're determining the time (t) taken for an object to fall from a distance (d).
The equation to represent this is:
Time equals the square root of 2 times the distance divided by the gravitational force of earth.
In equation from it looks like this (there isn't an icon to represent square root so just pretend like there's a square root there):
t = 2d/g (square-rooted)
d = 8,848m and g = 9.8m/s
Now plug in the information we have:
t = 2 x 8,848m/9.8m/s (square-rooted)
The first step is to multiply 2 times 8,848m:
t = 17,696m/9.8m/s (square-rooted)
Now divide 9.8m/s by 17,696m (note that the two m's (meters) cancels out leaving you with only s (seconds):
t = 1805.72s (square-rooted)
Now for the last step, find the square root of the remaining number:
t = 42.5s
So the time it takes the ball to drop from the height (distance) of 8,848 meters, and falling with the gravitational pull of 9.8 meters per second is 42.5 seconds.
I hope this helps :)
Answer:
The radius of the new planet is ~2.04 * 10⁶ m, or 2,041,752 m.
Explanation:
We can use Newton's Law of Universal Gravitation:
Let's look at Newton's 2nd Law:
We can set these equations equal to each other:
The mass of the second mass (astronaut) cancels out. We are left with:
We are solving for the radius of the new planet, so we can rearrange the equation:
Substitute in our known values given in the problem (<u><em>G = 6.67 * 10⁻¹¹ </em></u><em> ; </em><u><em>M = 7.5 * 10²³</em></u><em> ; </em><u><em>a = 12</em></u>).
The radius of the new planet is ~2.04 * 10⁶ m.