The capacitance of the system is 
Explanation:
The capacitance of a capacitor is given by the following equation:

where
C is the capacitance
Q is the charge stored in the capacitor
V is the potential difference across the capacitor
In this problem, we have:
is the charge stored
is the potential difference across it
Substituting into the equation, we find the capacitance:

Learn more about capacitors:
brainly.com/question/10427437
brainly.com/question/8892837
brainly.com/question/9617400
#LearnwithBrainly
Answer:
Eat more healthy foods. Workout and build your immune system.
Explanation:
Eat Healthy foods like Carrots, Apples, Bannas, Pears, and anything that deals with not much of any sugar. An example of unhealthy foods is Cakes, Chocolates, Candy, and more. Drink a lot of water.
Answer:
h >5/2r
Explanation:
This problem involves the application of the concepts of force and the work-energy theorem.
The roller coaster undergoes circular motion when going round the loop. For the rider to stay in contact with the cart at all times, the roller coaster must be moving with a minimum velocity v such that at the top the rider is in a uniform circular motion and does not fall out of the cart. The rider moves around the circle with an acceleration a = v²/r. Where r = radius of the circle.
Vertically two forces are acting on the rider, the weight and normal force of the cart on the rider. The normal force and weight are acting downwards at the top. For the rider not to fall out of the cart at the top, the normal force on the rider must be zero. This brings in a design requirement for the roller coaster to move at a minimum speed such that the cart exerts no force on the rider. This speed occurs when the normal force acting on the rider is zero (only the weight of the rider is acting on the rider)
So from newton's second law of motion,
W – N = mv²/r
N = normal force = 0
W = mg
mg = ma = mv²/r
mg = mv²/r
v²= rg
v = √(rg)
The roller coaster starts from height h. Its potential energy changes as it travels on its course. The potential energy decreases from a value mgh at the height h to mg×2r at the top of the loop. No other force is acting on the roller coaster except the force of gravity which is a conservative force so, energy is conserved. Because energy is conserved the total change in the potential energy of the rider must be at least equal to or greater than the kinetic energy of the rider at the top of the loop
So
ΔPE = ΔKE = 1/2mv²
The height at the roller coaster starts is usually higher than the top of the loop by design. So
ΔPE =mgh - mg×2r = mg(h – 2r)
2r is the vertical distance from the base of the loop to the top of the loop, basically the diameter of the loop.
In order for the roller coaster to move smoothly and not come to a halt at the top of the loop, the ΔPE must be greater than the ΔKE at the top.
So ΔPE > ΔKE at the top. The extra energy moves the rider the loop from the top.
ΔPE > ΔKE
mg(h–2r) > 1/2mv²
g(h–2r) > 1/2(√(rg))²
g(h–2r) > 1/2×rg
h–2r > 1/2×r
h > 2r + 1/2r
h > 5/2r
Answer:
T = 295.57 s
Explanation:
given,
mass of the rocket = 200 Kg
mass of the fuel = 100 Kg
acceleration = 35 m/s²
time, t = 35 s
time taken by the rocket to hit the ground, = ?
Final speed of the rocket when fuel is empty
using equation of motion
v = u + a t
v = 0 + 35 x 35
v = 1225 m/s
height of the rocket where fuel is empty
v² = u² + 2 a s
1225² = 0 + 2 x 35 x h₁
h₁ = 21437.5 m
After 35 s the rocket will be moving upward till the final velocity becomes zero.
Now, using equation of motion to find the height after 35 s
v² = u² + 2 g h₂
0² = 1225² + 2 x (-9.8) h₂
h₂ = 76562.5 m
total height = h₁ + h₂
= 76562.5 m + 21437.5 m = 98000 m
now, time taken by before the rocket hit the ground
using equation of motion


negative sign is used because the distance travel by the rocket is downward.
4.9 t² - 1225 t - 13500 = 0

t = 260.57 s
neglecting the negative sign
total time the rocket was in air
T = t₁ + t₂
T = 35 + 260.57
T = 295.57 s
Time for which rocket was in air is equal to 295.57 s.