Answer:
Both objects will undergo the same change in velocity
Explanation:
m = Mass of the Earth = 5.972 × 10²⁴ kg
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
r = Radius of Earth = 6371000 m
m = Mass of object
Any object which is falling has only the acceleration due to gravity.

The acceleration due to gravity on Earth is 9.81364 m/s²
So, the speeds of the objects will change at an equal rate of 9.81364 m/s² but the change will be negative when an object is thrown up.
Hence, both objects will undergo the same change in velocity.
Answer:
Explanation:
To solve this problem we use the Hooke's Law:
(1)
F is the Force needed to expand or compress the spring by a distance Δx.
The spring stretches 0.2cm per Newton, in other words:
1N=k*0.2cm ⇒ k=1N/0.2cm=5N/cm
The force applied is due to the weight

We replace in (1):
We solve the equation for m:
The answer is true I think
The correct answer is 1.25 because it is 1/2 of 1 1/2 and that is 1.25.
Answer:
340.67 kgm²/s
Explanation:
R = Radius of merry-go-round = 1.9 m
I = Moment of inertia = 209 kgm²
= Initial angular velocity = 1.63 rad/s
m = Mass of person = 73 kg
v = Velocity = 4.8 m/s
Initial angular momentum is given by

The initial angular momentum of the merry-go-round is 340.67 kgm²/s