1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Levart [38]
4 years ago
15

A small plane flies at a speed of 102 km/h in still air. Suppose the wind blows out from the west (with the air moving east) at

a speed of 46 km/h.A) In what direction must the pilot head her plane to move directly north across land?B) How long does it take her to reach a point 300 km directly north of her srarting point?
Physics
1 answer:
Semmy [17]4 years ago
7 0

Answer:

2.68 hours

Explanation:

A.) Suppose the wind blows out from the west (with the air moving east). The pilot should then head her plane to northwest direction to move directly north.

B.) Given that plane flies at a speed of 102 km/h in still air. And the wind blows out from the west (with the air moving east) at a speed of 46 km/h.

The plan resultant speed can be calculated by using pythagorean theorem.

Resultant Speed = Sqrt( 102^2 + 46^2 )

Resultant Speed = Sqrt( 12520)

Resultant speed = 111.89 km/h

From the definition of speed,

Speed = distance/time

Where distance = 300 km

Substitute the resultant speed and the distance into the formula.

111.89 = 300/time

Time = 300/111.89

Time = 2.68 hours

Therefore, it take her 2.68 hours to reach a point 300 km directly north of her srarting point

You might be interested in
Two velcro-covered pucks slide across the ice, collide and stick to one another. Their interaction with the ice is frictionless.
balu736 [363]

Answer:

<em>1. False</em>

<em>2. True</em>

<em>3. False</em>

<em>4. True</em>

Explanation:

<u>Conservation of Momentum</u>

According to the law of conservation of linear momentum, the total momentum of the system formed by both pucks won't change regardless of their interaction if no external forces are acting on the system.

The momentum of an object of mass ma moving at speed va is

p_a=m_a.v_a

The total momentum of both pucks at the initial condition is

p_1=m_a.v_a+m_b.v_b

Both pucks are moving to the right and puck B has twice the mass of puck A (let's call it m), thus

m_a=m

m_b=2m

We are given

v_a=6\ m/s\\v_b=2\ m/s

The total initial momentum is

p_1=6m+2(2m)=10m

At the final condition, both pucks stick together, thus the total mass is 3m and the final speed is common, thus

p_2=3m.v'

Equating the initial and final momentum

10m=3m.v'

Solving for v'

v'=10/3\ m/s=3.33\ m/s

1. Compute the initial kinetic energy:

\displaystyle K_1=\frac{1}{2}mv_a^2+\frac{1}{2}2mv_b^2

\displaystyle K_1=\frac{1}{2}m\cdot 6^2+\frac{1}{2}2m\cdot 2^2

K_1=18m+4m=22m

The final kinetic energy is

\displaystyle K_2=\frac{1}{2}mv'^2+\frac{1}{2}2mv'^2

\displaystyle K_2=\frac{1}{2}m\cdot 3.33^2+\frac{1}{2}2m\cdot 3.33^2

K_2=16.63m

As seen, part of the kinetic energy is lost in the collision, thus the statement is False

2. The initial speed of puck B was 2 m/s and the final speed was 3.33 m/s, thus it increased the speed: True

3. The initial speed of puck A was 6 m/s and the final speed was 3.33 m/s, thus it decreased the speed: False

4. The momentum is conserved since that was the initial assumption to make all the calculations. True

p_1=10m

p_2=3m.v'=3m(10/3)=10m

Proven

5 0
3 years ago
A research submarine has a 30-cm-diameter window that is 8.1 cm thick. The manufacturer says the window can withstand forces up
malfutka [58]

The pressure at a certain depth underwater is:

P = ρgh

P = pressure, ρ = sea water density, g = gravitational acceleration near Earth, h = depth

The pressure exerted on the submarine window is:

P = F/A

P = pressure, F = force, A = area

The area of the circular submarine window is:

A = π(d/2)²

A = area, d = diameter

Set the expressions for the pressure equal to each other:

F/A = ρgh

Substitute A:

F/(π(d/2)²) = ρgh

Isolate h:

h = F/(ρgπ(d/2)²)

Given values:

F = 1.1×10⁶N

ρ = 1030kg/m³ (pulled from a Google search)

g = 9.81m/s²

d = 30×10⁻²m

Plug in and solve for h:

h = 1.1×10⁶/(1030(9.81)π(30×10⁻²/2)²)

h = 1540m

5 0
3 years ago
The first law of Thermodynamics is another way to describe the law of conservation of Energy. It states that:
nikitadnepr [17]

Answer:

C. The change of internal energy of a system is the sum of work and heat spent on it.

Explanation:

The law of conservation of Energy states that energy cannot be destroyed but can only be converted or transformed from one form to another. Therefore, the sum of the initial kinetic energy and potential energy is equal to the sum of the final kinetic energy and potential energy.

Mathematically, it is given by the formula;

Ki + Ui = Kf + Uf .......equation 1

Where;

Ki and Kf are the initial and final kinetic energy respectively.

Ui and Uf are the initial and final potential energy respectively.

The law of conservation of Energy is another way to describe the law of Thermodynamics. It states that the change of internal energy of a system is the sum of work and heat spent on it.

Mathematically, it is given by the formula;

ΔU = Q − W

Where;

ΔU represents the change in internal energy of a system.

Q represents the net heat transfer in and out of the system.

W represents the sum of work (net work) done on or by the system.

6 0
3 years ago
What is a situation in which friction is helpful?
bagirrra123 [75]
When driving a car on the road
8 0
3 years ago
Automobiles must be able to sustain a frontal impacl The automobile design must allow low speed impacts with little sustained da
valentinak56 [21]

Answer: the effective design stiffness required to limit the bumper maximum deflection during impact to 4 cm is 3906250 N/m

Explanation:

Given that;

mass of vehicle m = 1000 kg

for a low speed test; V = 2.5 m/s

bumper maximum deflection = 4 cm = 0.04 m

First we determine the energy of the vehicle just prior to impact;

W_v = 1/2mv²

we substitute

W_v = 1/2 × 1000 × (2.5)²

W_v = 3125 J

now, the the effective design stiffness k will be:

at the impact point, energy of the vehicle converts to elastic potential energy of the bumper;

hence;

W_v = 1/2kx²

we substitute

3125 = 1/2 × k (0.04)²

3125 = 0.0008k

k = 3125 / 0.0008

k = 3906250 N/m

Therefore, the effective design stiffness required to limit the bumper maximum deflection during impact to 4 cm is 3906250 N/m

3 0
3 years ago
Other questions:
  • A mans walks 200 meter on 20 seconds. What is the man speed?
    9·2 answers
  • Explain the process that causes dew to form on blades of grass. ​
    8·2 answers
  • Which gas is a greenhouse gas?<br><br> nitrogen<br> oxygen<br> carbon dioxide<br> hydrogen
    14·2 answers
  • Dwight uses a spring (k = 70 N/m) on a horizontal surface to make a launcher for model cars. The spring is attached to a holder
    11·2 answers
  • Kepler modified Copernicus's model of the universe by proposing that the
    12·1 answer
  • A 25 n object is 3 meters up. How much potential energy does it have?
    10·1 answer
  • What does displacement describe?
    10·1 answer
  • Which formula can be used to express the law of conservation of momentum, where p=momentum
    7·2 answers
  • What is hotter 6000k or 3000k
    15·2 answers
  • A 5 kg ball travels at a velocity of 10 m/s, what is the momentum of the ball
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!