1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tpy6a [65]
3 years ago
5

a contractor is mixing concrete and mixed 3 parts concrete and 9 parts water. How much water is needed for 12 parts concrete?

Mathematics
1 answer:
weeeeeb [17]3 years ago
5 0

Answer:

36 parts water

Step-by-step explanation:

3/9 = 1/3 = for every 1 part concrete, it's 3 parts water.

12/x = 1/3; x = 36

so, 12 x 3 = 36

You might be interested in
Given a = {1, 2, 3, 4, 5, 6, 7, 8, 9} and b = {2, 4, 6, 8} what is AUB?
cestrela7 [59]
<span>AUB is the union of sets A and B.
It is a set that contains every element of set A and every element of set B.
Write a set that has all the numbers in both sets A and B. Be sure to write each number only once even if the number appears in both sets A and B.
</span>
8 0
3 years ago
Deion divided 1/2 of a liter of plant fertilizer evenly among some smaller bottles. He put 1/8 of a liter into each bottle. How
Klio2033 [76]

Answer:

4 bottles

Step-by-step explanation:

Given

Fertilizer = \frac{1}{2}L

Bottles = \frac{1}{8}L

Required

Determine the number of bottles

Represent the number of bottles with N

<em>This implies that N bottles of </em>\frac{1}{8}L<em> fit into </em>\frac{1}{2}L<em> of fertilizer. The relationship between them is:</em>

<em></em>Fertilizer =  Bottles * N

\frac{1}{2}L = \frac{1}{8}L* N

\frac{1}{2} = \frac{1}{8}* N

Multiply through by 8

8 * \frac{1}{2} = 8 * \frac{1}{8}* N

4 = 1* N

4 = N

N = 4

<em>Hence, there are  N = 4</em>

5 0
3 years ago
The triangles are isosceles and ΔABC : ΔJKL. What is the length of pie?<br>A=2.5cm<br>C=4cm<br>k=5cm
Pavlova-9 [17]
The length of the pie is 20cm2
6 0
3 years ago
Factor.<br> 4z² – 8z - 5
Nataly [62]

Answer: z = -1/2 = -0.500

z = 5/2 = 2.500

Step-by-step explanation:

Step by step solution :

Step  1  :

Equation at the end of step  1  :

 (22z2 -  8z) -  5  = 0  

Step  2  :

Trying to factor by splitting the middle term

2.1     Factoring  4z2-8z-5  

The first term is,  4z2  its coefficient is  4 .

The middle term is,  -8z  its coefficient is  -8 .

The last term, "the constant", is  -5  

Step-1 : Multiply the coefficient of the first term by the constant   4 • -5 = -20  

Step-2 : Find two factors of  -20  whose sum equals the coefficient of the middle term, which is   -8 .

     -20    +    1    =    -19  

     -10    +    2    =    -8    That's it

Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -10  and  2  

                    4z2 - 10z + 2z - 5

Step-4 : Add up the first 2 terms, pulling out like factors :

                   2z • (2z-5)

             Add up the last 2 terms, pulling out common factors :

                    1 • (2z-5)

Step-5 : Add up the four terms of step 4 :

                   (2z+1)  •  (2z-5)

            Which is the desired factorization

Equation at the end of step  2  :

 (2z - 5) • (2z + 1)  = 0  

Step  3  :

Theory - Roots of a product :

3.1    A product of several terms equals zero.  

When a product of two or more terms equals zero, then at least one of the terms must be zero.  

We shall now solve each term = 0 separately  

In other words, we are going to solve as many equations as there are terms in the product  

Any solution of term = 0 solves product = 0 as well.

Solving a Single Variable Equation :

3.2      Solve  :    2z-5 = 0  

Add  5  to both sides of the equation :  

                     2z = 5

Divide both sides of the equation by 2:

                    z = 5/2 = 2.500

Solving a Single Variable Equation :

3.3      Solve  :    2z+1 = 0  

Subtract  1  from both sides of the equation :  

                     2z = -1

Divide both sides of the equation by 2:

                    z = -1/2 = -0.500

Supplement : Solving Quadratic Equation Directly

Solving    4z2-8z-5  = 0   directly  

Earlier we factored this polynomial by splitting the middle term. let us now solve the equation by Completing The Square and by using the Quadratic Formula

Parabola, Finding the Vertex :

4.1      Find the Vertex of   y = 4z2-8z-5

For any parabola,Az2+Bz+C,the  z -coordinate of the vertex is given by  -B/(2A) . In our case the  z  coordinate is   1.0000  

Plugging into the parabola formula   1.0000  for  z  we can calculate the  y -coordinate :  

 y = 4.0 * 1.00 * 1.00 - 8.0 * 1.00 - 5.0

or   y = -9.000

Parabola, Graphing Vertex and X-Intercepts :

Root plot for :  y = 4z2-8z-5

Axis of Symmetry (dashed)  {z}={ 1.00}  

Vertex at  {z,y} = { 1.00,-9.00}  

z -Intercepts (Roots) :

Root 1 at  {z,y} = {-0.50, 0.00}  

Root 2 at  {z,y} = { 2.50, 0.00}  

Solve Quadratic Equation by Completing The Square

4.2     Solving   4z2-8z-5 = 0 by Completing The Square .

Divide both sides of the equation by  4  to have 1 as the coefficient of the first term :

  z2-2z-(5/4) = 0

Add  5/4  to both side of the equation :

  z2-2z = 5/4

Now the clever bit: Take the coefficient of  z , which is  2 , divide by two, giving  1 , and finally square it giving  1  

Add  1  to both sides of the equation :

 On the right hand side we have :

  5/4  +  1    or,  (5/4)+(1/1)  

 The common denominator of the two fractions is  4   Adding  (5/4)+(4/4)  gives  9/4  

 So adding to both sides we finally get :

  z2-2z+1 = 9/4

Adding  1  has completed the left hand side into a perfect square :

  z2-2z+1  =

  (z-1) • (z-1)  =

 (z-1)2

Things which are equal to the same thing are also equal to one another. Since

  z2-2z+1 = 9/4 and

  z2-2z+1 = (z-1)2

then, according to the law of transitivity,

  (z-1)2 = 9/4

We'll refer to this Equation as  Eq. #4.2.1  

The Square Root Principle says that When two things are equal, their square roots are equal.

Note that the square root of

  (z-1)2   is

  (z-1)2/2 =

 (z-1)1 =

  z-1

Now, applying the Square Root Principle to  Eq. #4.2.1  we get:

  z-1 = √ 9/4

Add  1  to both sides to obtain:

  z = 1 + √ 9/4

Since a square root has two values, one positive and the other negative

  z2 - 2z - (5/4) = 0

  has two solutions:

 z = 1 + √ 9/4

  or

 z = 1 - √ 9/4

Note that  √ 9/4 can be written as

 √ 9  / √ 4   which is 3 / 2

Solve Quadratic Equation using the Quadratic Formula

4.3     Solving    4z2-8z-5 = 0 by the Quadratic Formula .

According to the Quadratic Formula,  z  , the solution for   Az2+Bz+C  = 0  , where  A, B  and  C  are numbers, often called coefficients, is given by :

                                     

           - B  ±  √ B2-4AC

 z =   ————————

                     2A

 In our case,  A   =     4

                     B   =    -8

                     C   =   -5

Accordingly,  B2  -  4AC   =

                    64 - (-80) =

                    144

Applying the quadratic formula :

              8 ± √ 144

  z  =    —————

                   8

Can  √ 144 be simplified ?

Yes!   The prime factorization of  144   is

  2•2•2•2•3•3  

To be able to remove something from under the radical, there have to be  2  instances of it (because we are taking a square i.e. second root).

√ 144   =  √ 2•2•2•2•3•3   =2•2•3•√ 1   =

               ±  12 • √ 1   =

               ±  12

So now we are looking at:

          z  =  ( 8 ± 12) / 8

Two real solutions:

z =(8+√144)/8=1+3/2= 2.500

or:

z =(8-√144)/8=1-3/2= -0.500

Two solutions were found :

z = -1/2 = -0.500

z = 5/2 = 2.500

3 0
3 years ago
Read 2 more answers
At a day camp there is 56 girls and 42 boys the campers need to be split into equal groups each has either all girls are all boy
rusak2 [61]
AT this day camp, the greatest number of campers each group can have is 14 campers.
7 0
3 years ago
Other questions:
  • Write a linear Write a linear function f with f(−9)=10 and f(−1)=−2.function f with f(−9)=10 and f(−1)=−2.
    9·1 answer
  • ASAP!! Please help me. I will not accept nonsense answers, but will mark as BRAINLIEST if you answer is correctly with solutions
    7·1 answer
  • Brainliest +30 points for the correct answer
    15·1 answer
  • If sec 48 = 1.4945, find csc 42
    14·1 answer
  • having a blonde moment here lol. harvey is 3 times as old as jane. the sum of their ages is 48. find the age of each​
    9·2 answers
  • Sophia asked the students in her class to name their favorite sports. She made a list to display the results. 1/3 of students na
    14·1 answer
  • What is the solution of the following linear system of equations? 4y=−5x−2, x−4y=14
    15·1 answer
  • Heavy general purpose trucks are often used in pipeline operations. They are built to hold up when carrying or pulling substanti
    14·1 answer
  • Henry divided his socks into five equal groups. Let s represent the total number of socks. Which expression and solution represe
    6·2 answers
  • the cost to go bowling is a function in terms of the number of games bowled. the cost to bowl 2 games with a shoe rental is $16.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!