Answer:
The distance by the ball clear the crossbar is 1.15 m
Explanation:
Given that,
Distance = 44 m
Speed = 24 m/s
Angle = 31°
Height = 3.05 m
We need to calculate the horizontal velocity
Using formula of horizontal velocity

Put the value into the formula


We need to calculate the vertical velocity
Using formula of vertical velocity

Put the value into the formula


We need to calculate the time
Using formula of time

Put the value into the formula


We need to calculate the vertical height
Using equation of motion

Put the value into the formula


We need to calculate the distance by the ball clear the crossbar
Using formula for vertical distance

Put the value of h


Hence, The distance by the ball clear the crossbar is 1.15 m
Answer: option B: The resistor has a tolerance of 20%.
Explanation:
Resistors are color coded to identify their value and function. For a 3- Band resistor, reading from the left, first band denotes first digit, second band depicts second digit and third color depicts the multiplier. The absence of fourth band means the resistor has tolerance 20%.
Hence, the correct answer is option B. The resistor has a tolerance of 20%.
Mass/density= volume so it will be 360/0.9 which equals to 400 and if you want to find mass you just need to multiple volume•density
Answer: 2.37N
Explanation:
According to coulombs law which states that the force of attraction (F) between two charges (q1 and q2) is directly proportional to the product of their charges and inversely proportional to the square of the distance (r) between them. Mathematically,
F = kq1q2/r²
For the first two charges that are sitting 1.5 m apart with a force of 3 N between them, we have
3 = kq1q2/1.5²
3 = kq1q2/2.25
Kq1q2= 6.75... (1)
If the charges are now moved farther apart 2.25 m and one of the charges is increased by a factor of 4. The formula becomes
F2 = k(4q1)q2/2.25² (q1 has been increased by factor of 4)
k(4q1)q2 = 5.06F2 ... (2)
Dividing 2 by 1 we have
k(4q1)q2/kq1q2 = 5.06F2/3
4 = 5.06F2/3
5.06F2 = 12
F2= 12/5.06
F2 = 2.37N
Therefore the magnitude of the new force between the two charges is 2.37N
Answer:
force, mass, and acceleration
Explanation:
According to Newton's 2nd law, the acceleration of an object depends on the net force and the mass of the object. The equation for the 2nd law is Force = mass * acceleration.