This question is incomplete, the complete question is;
A football quarterback throws a 0.408 kg football for a long pass. While in the motion of throwing, the quarterback moves the ball 1.909 m, starting from rest, and completes the motion in 0.439 s. Assuming the acceleration is constant, what force does the quarterback apply to the ball during the pass
;
a) F_throw = 8.083 N
b) F_throw = 9.181 N
c) F_throw = 2.284 N
d) F_throw = 16.014 N
e) None of these is correct
Answer:
the quarterback applied a force of 8.083 N to the ball during the pass
so Option a) F_throw = 8.083 N is the correct answer
Explanation:
Given that;
m = 0.408 kg
d = 1.909 m
u = 0 { from rest}
t = 0.439 s
Now using Kinetic equation
d = ut + 1/2 at²
we substitute
1.909 = (0 × 0.439) + 1/2 a(0.439)²
1.909 = 0 + 0.09636a
1.909 = 0.09636a
a = 1.909 / 0.09636
a = 19.8111 m/s²
Now force applied will be;
F = ma
we substitute
F = 0.408 × 19.8111
F = 8.0828 ≈ 8.083 N
Therefore the quarterback applied a force of 8.083 N to the ball during the pass
so Option a) F_throw = 8.083 N is the correct answer
Conduction is the transfer of energy by collusion between the atoms and molecules in a material.
Answer:
(a) 8 m/s
(b) 5 s
Explanation:
(a)
Using,
V² = U²+2gh ......................... Equation 1
Where V = final velocity, U = Initial velocity, g = acceleration due to gravity on the surface of the moon, h = height reached.
Given: V = 0 m/s ( At it's maximum height), g = -1.6 m/s² ( as its moves against gravity), h = 20 m.
Substitute into equation 1
0 = U²+[2×20×(-1.6)]
-U² = - 64
U² = 64
U = √64
U = 8 m/s.
(b)
V = U +gt.................... Equation 2
Where t = time to reach the maximum height.
Given: V = 0 m/s ( At the maximum height), g = -1.6 m/s² ( Moving against gravity), U = 8 m/s.
Substitute into equation 2
0 = 8+(-1.6t)
-8 = -1.6t
-1.6t = -8
t = -8/-1.6
t = 5 s.
<span>Direct Free Kick
Pass
<span>and Dribbling</span></span>
Answer:
In disagreement
Explanation:
Fluorescence can be defined as the phenomenon by which an object emits visible light when placed in front of ultraviolet light. In fluorescence, the absorbed light increases the energy band of the electrons, causing them to go into a more excited state. The electrons, before they release the absorbed energy in the form of light, lose a part of the energy due to the vibration of the molecules. When they return to their initial state, the electrons will emit light.
While microwaves are electromagnetic waves whose frequency is high, and are used for the transmission of high-speed telegraphic signals and for the communication of satellites and do not emit light.