Answer:it takes approximately 148.8 seconds to achieve. The average person in a free-fall will hit the ground going at 9.66 m/s from the top of the Empire State Building.
Explanation:
Answer: 6250 joules
Explanation:
The work needed to lift an object of mass M by a height H is equal to:
w = M*g*H
where h = 10m/s^2
then the total work that he did is equal to the sum of the work for every stone:
W = (100kg*g*H) + (120kg*g*H) + (140kg*g*H) + (160kg*g*H) + (180kg*g*H)
= (100kg + 120kg + 140kg + 160kg + 180kg)*g*H
= (500kg)*g*H
and now we can repalce g by 10m/s^2 and H by 125cm
But you can notice that we have two different units of distance, so knowing that 100cm = 1m
we can write H = 125cm = (125/100) m = 1.25 m
Then we have:
H = 500kg*10m/s^2*1.25m = 6250 J
Answer:
2.96 cm
Explanation:
By Hook's law
Force(F) = Spring constant(k) × Extension(d)
F = k × d
Force is the weight of the object, F = W = mg
So we get, mg = kd ⇒ m ∝ d
2.5 ∝ 1.68 --------------(1)
4.4 ∝ d' --------------(2)
From (1) & (2), 4.4/2.5 = d'/1.68
d' = 2.96 cm ⇒ the required extension.
I’m not sure if this will help but I found: https://prezi.com/l0fa6du3b9kp/going-off-the-grid-assignment/?fallback=1 and
So we want to know what are loops of gas on the Sun that link different parts of sunspot regions together. A large and bright gaseous feature that extends from the surface of the Sun that links different parts of sunspot regions together is called Prominence. They are on the Suns surface in the photosphere and they extend outwards into the Corona.