Complete Question
Due to blurring caused by atmospheric distortion, the best resolution that can be obtained by a normal, earth-based, visible-light telescope is about 0.3 arcsecond (there are 60 arcminutes in a degree and 60 arcseconds in an arcminute).Using Rayleigh's criterion, calculate the diameter of an earth-based telescope that gives this resolution with 700 nm light
Answer:
The diameter is
Explanation:
From the question we are told that
The best resolution is 
The wavelength is 
Generally the
1 arcminute = > 60 arcseconds
=> x arcminute => 0.3 arcsecond
So

=> 
Now
60 arcminutes => 1 degree
0.005 arcminutes = > z degrees
=> 
=> 
Converting to radian

Generally the resolution is mathematically represented as

=> 
=>
=>
The answer is B I hope this helps luv
The work done against gravity is 100 J
Explanation:
The work done against gravity in order to lift an object is equal to the change in gravitational potential energy of the object:

where
m is the mass of the object
g is the acceleration of gravity
is the change in height of the object
For the object in this problem, we have:
m = 5 kg


Substituting into the equation,

Learn more about work:
brainly.com/question/6763771
brainly.com/question/6443626
#LearnwithBrainly
Answer: Fluorinated gases (F-gases) are man-made gases that can stay in the atmosphere for centuries and contribute to a global greenhouse effect. this is extremely bad for the earth and is causing downpour on our plants and animals. Why would we creat gases we can not get rid of its ver diapointing
The question is incomplete. You dis not provide values for A and B. Here is the complete question
Light in the air is incident at an angle to a surface of (12.0 + A) degrees on a piece of glass with an index of refraction of (1.10 + (B/100)). What is the angle between the surface and the light ray once in the glass? Give your answer in degrees and rounded to three significant figures.
A = 12
B = 18
Answer:
18.5⁰
Explanation:
Angle of incidence i = 12.0 + A
A = 12
= 12.0 + 12
= 14
Refractive index u = 1.10 + B/100
= 1.10 + 18/100
= 1.10 + 0.18
= 1.28
We then find the angle of refraction index u
u = sine i / sin r
u = sine24/sinr
1.28 = sine 24 / sine r
1.28Sine r = sin24
1.28 sine r = 0.4067
Sine r = 0.4067/1.28
r = sine^-1(0.317)
r = 18.481
= 18.5⁰