1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Contact [7]
3 years ago
6

How is the surface area of an average person is 2m^2 in the chapter pressure

Physics
2 answers:
iren [92.7K]3 years ago
6 0

Answer:

The total atmospheric pressure experienced by the person's whole body is, P = 202650 N/m²

Explanation:

Given data,

The surface area of the person, A = 2 m²

The standard atmospheric pressure is  P = 101325 N/m² (or), Pascal

This is the amount of pressure experienced by 1 m² body at sea level.

If the surface area of the person is, A = 2 m², then the pressure becomes,

                                  P = 2 x 101325 N/m²

                                    = 202650 N/m²

Hence the total atmospheric pressure experienced by the person's whole body is, P = 202650 N/m²

11Alexandr11 [23.1K]3 years ago
3 0

Answer:

We have to show surface area =2m^2,with few conditions that is by considering Force =200000\ N and Pressure =100000\ Pa to be respectively.

Explanation:

The atmospheric pressure is =10^{5}\ Pa on Earth's surface.

The magnitude of the force exerted on a person by the atmosphere is =2\times 10^{5}\N (or)\ 200kN\ (or)\ 20\ ton.

Now to calculate surface area we can find it from pressure=\frac{force}{area} and re-arranging it to.

area=\frac{force}{pressure}

So plugging the values,

Surface area =\frac{20000}{10000}=2\ m^{2}

Hence from the above calculations we can say that surface area is 2m^2.

So the surface area of an average person can be said to have 2m^2, using the concept of pressure and force.

You might be interested in
17. A 25 kg block is initially at rest on a rough, horizontal surface. A horizontal force of 75 N is required to set
lapo4ka [179]

Answer:

0.30581

0.24464

Explanation:

\mu_s = Coefficient of static friction

\mu_k = Coefficient of kinetic friction

F_f = 75 N

F_k = 60 N

Normal force

F_n=mg\\\Rightarrow F_n=25\times 9.81\\\Rightarrow F_n=245.25\ N

Frictional force

F_f=\mu_sF_n\\\Rightarrow \mu_s=\frac{F_f}{F_n}\\\Rightarrow \mu_s=\frac{75}{245.25}\\\Rightarrow \mu_s=0.30581

The coefficient of static friction is 0.30581

Kinetic force

F_k=\mu_kF_n\\\Rightarrow \mu_k=\frac{F_k}{F_n}\\\Rightarrow \mu_s=\frac{60}{245.25}\\\Rightarrow \mu_s=0.24464

The coefficient of kinetic friction is 0.24464

4 0
3 years ago
Whose geocentric model was accepted for 1400 years
zysi [14]
<span>IDK the answer but I think it was "Ptolemy" whose geocentric model of the solar system was accepted for 1,400 years, and was embraced by the the Church until Galileo called it into question.</span>
8 0
3 years ago
PLEASE HELP
GREYUIT [131]

Answer:

h = 1.8 m

Explanation:

The initial velocity of the glove, u =- 6 m/s

We need to find the maximum height of the glove. Let it is equal to h. Using equation of kinematics. At the maximum height v = 0

v^2-u^2=2ah, h is the maximum height and a = -g

0^2-(6)^2=2\times (-10)\times h\\\\h=\dfrac{36}{20}\\\\h=1.8\ m

Hence, it will go up to a height of 1.8 m.

4 0
3 years ago
NASA is concerned about the ability of a future lunar outpost to store the supplies necessary to support the astronauts the supp
IRINA_888 [86]

Complete question :

NASA is concerned about the ability of a future lunar outpost to store the supplies necessary to support the astronauts the supply storage area of the lunar outpost where gravity is 1.63m/s/s can only support 1 x 10 over 5 N. What is the maximum WEIGHT of supplies, as measured on EARTH, NASA should plan on sending to the lunar outpost?

Answer:

601000 N

Explanation:

Given that :

Acceleration due to gravity at lunar outpost = 1.6m/s²

Supported Weight of supplies = 1 * 10^5 N

Acceleration due to gravity on the earth surface = 9.8m/s²

Maximum weight of supplies as measured on EARTH :

Ratio of earth gravity to lunar post gravity:

(Earth gravity / Lunar post gravity) ;

(9.8 / 1.63) = 6.01

Hence, maximum weight of supplies as measured on EARTH should be :

6.01 * (1 × 10^5)

6.01 × 10^5

= 601000 N

3 0
3 years ago
Convert 5.5 kilometers into millimeters.​
dimaraw [331]

Answer:

5500000 millimeters

Explanation:

1 kilometre= 1000 meter

5.5 km=5.5 * 1000

=5500

Now,

1 metre = 1000 millimetres

5500 metre=1000*5500

=5500000 mm

4 0
1 year ago
Other questions:
  • a 7.26kg bowling ball (16 pounds) is at rest at the end of the bowling lane. : how long did you push the ball in this situation
    15·1 answer
  • Which of the following processes requires a physical medium (a solid, liquid, or gas) to transfer thermal energy from one object
    5·1 answer
  • Two objects of mass m move in opposite directions toward each other. The green object moves at velocity v, and the blue object m
    12·2 answers
  • Two metal sphere each of radius 2.0 cm, have a center-to-center separation of 3.30 m. Sphere 1 has a chrage of +1.10 10^-8 C. Sp
    8·1 answer
  • Cual es la importancia de los bienes comunes y distribuirlo de forma equitativa?​
    14·1 answer
  • A fighter jet travels 10km at an angle of 30 degrees. He then turns sharply and flies 25 km at an angle of 75 degrees. What is t
    8·1 answer
  • Fill in the blanks to complete the sentence.
    6·2 answers
  • How might the ability of magnets to attract certain metals relate to the crane?
    5·1 answer
  • Which component of an atom contains the MAJORITY<br> of its mass?
    12·1 answer
  • . A girl of mass 35 kg and boy of mass 25 kg are connected by a light rope. They move horizontally in a skating rink. A second r
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!