the answer is a. bc carpet has lot and tile has more than gravel
Answer:
Change in momentum, 
Explanation:
It is given that,
Mass of the basketball, m = 601 g = 0.601 kg
The basketball makes an angle of 29 degrees to the vertical, it hits the floor with a speed, v = 6 m/s
It bounces up with the same speed, again moving to the right at an angle of 29 degree to the vertical. We need to find the change in momentum. It is given by :




So, the change in momentum of the basketball is 6.3 kg-m/s. Hence, this is the required solution.
It is Continental polar ( only if this is for apex)
Hi!
The answer would be A. Isobaric Process
<h3>Explanation:</h3>
Isobaric process is a process where the pressure inside a system remains unchanged. In the Pressure Volume graph given, you can see that the pressure (y axis) remains constant with an increasing volume ( x axis). An example of this would be heating a container with a movable piston. Now, the degree of pressure is dependent on the frequency of collisions of particles inside a system on the walls. If this frequency changes, the pressure changes (proportionally). In our example, heating a container with a movable piston results in the particles inside the container to gain kinetic energy and move faster, meaning an increased frequency of collisions (higher pressure), but at the system time the increase in pressure results in the piston being pushed outwards, causing the volume of the container to increase. This results in decreased frequency of collision of the particles with the walls of the container (lesser pressure). This results in the a zero net effect on the pressure.
Hope this helps!
Answer:
minimum mass of the neutron star = 1.624 × 10^30 kg
Explanation:
For a material to remain on the surface of a rapidly rotating neuron star, the magnitude oĺf the gravitational acceleration on the material must be equal to the magnitude of the centripetal acceleration of the rotating neuron star.
This can be represented by the explanations in the attached document.
minimum mass of the neutron star = 1.624 × 10^30 kg