Answer:
looking at this picture i see that the x value is -30 and the y value is 30
and looking at this it looks like the slope is 30°.
Step-by-step explanation:
not sure if this is right because i have a blank memory about things i learned in pre alg.
but if i'm wrong forgive me.
and if i'm right good luck on whatever you are doing.
Answer:
a) ![P[C]=p^n](https://tex.z-dn.net/?f=P%5BC%5D%3Dp%5En)
b) ![P[M]=p^{8n}(9-8p^n)](https://tex.z-dn.net/?f=P%5BM%5D%3Dp%5E%7B8n%7D%289-8p%5En%29)
c) n=62
d) n=138
Step-by-step explanation:
Note: "Each chip contains n transistors"
a) A chip needs all n transistor working to function correctly. If p is the probability that a transistor is working ok, then:
![P[C]=p^n](https://tex.z-dn.net/?f=P%5BC%5D%3Dp%5En)
b) The memory module works with when even one of the chips is defective. It means it works either if 8 chips or 9 chips are ok. The probability of the chips failing is independent of each other.
We can calculate this as a binomial distribution problem, with n=9 and k≥8:
![P[M]=P[C_9]+P[C_8]\\\\P[M]=\binom{9}{9}P[C]^9(1-P[C])^0+\binom{9}{8}P[C]^8(1-P[C])^1\\\\P[M]=P[C]^9+9P[C]^8(1-P[C])\\\\P[M]=p^{9n}+9p^{8n}(1-p^n)\\\\P[M]=p^{8n}(p^{n}+9(1-p^n))\\\\P[M]=p^{8n}(9-8p^n)](https://tex.z-dn.net/?f=P%5BM%5D%3DP%5BC_9%5D%2BP%5BC_8%5D%5C%5C%5C%5CP%5BM%5D%3D%5Cbinom%7B9%7D%7B9%7DP%5BC%5D%5E9%281-P%5BC%5D%29%5E0%2B%5Cbinom%7B9%7D%7B8%7DP%5BC%5D%5E8%281-P%5BC%5D%29%5E1%5C%5C%5C%5CP%5BM%5D%3DP%5BC%5D%5E9%2B9P%5BC%5D%5E8%281-P%5BC%5D%29%5C%5C%5C%5CP%5BM%5D%3Dp%5E%7B9n%7D%2B9p%5E%7B8n%7D%281-p%5En%29%5C%5C%5C%5CP%5BM%5D%3Dp%5E%7B8n%7D%28p%5E%7Bn%7D%2B9%281-p%5En%29%29%5C%5C%5C%5CP%5BM%5D%3Dp%5E%7B8n%7D%289-8p%5En%29)
c)
![P[M]=(0.999)^{8n}(9-8(0.999)^n)=0.9](https://tex.z-dn.net/?f=P%5BM%5D%3D%280.999%29%5E%7B8n%7D%289-8%280.999%29%5En%29%3D0.9)
This equation was solved graphically and the result is that the maximum number of chips to have a reliability of the memory module equal or bigger than 0.9 is 62 transistors per chip. See picture attached.
d) If the memoty module tolerates 2 defective chips:
![P[M]=P[C_9]+P[C_8]+P[C_7]\\\\P[M]=\binom{9}{9}P[C]^9(1-P[C])^0+\binom{9}{8}P[C]^8(1-P[C])^1+\binom{9}{7}P[C]^7(1-P[C])^2\\\\P[M]=P[C]^9+9P[C]^8(1-P[C])+36P[C]^7(1-P[C])^2\\\\P[M]=p^{9n}+9p^{8n}(1-p^n)+36p^{7n}(1-p^n)^2](https://tex.z-dn.net/?f=P%5BM%5D%3DP%5BC_9%5D%2BP%5BC_8%5D%2BP%5BC_7%5D%5C%5C%5C%5CP%5BM%5D%3D%5Cbinom%7B9%7D%7B9%7DP%5BC%5D%5E9%281-P%5BC%5D%29%5E0%2B%5Cbinom%7B9%7D%7B8%7DP%5BC%5D%5E8%281-P%5BC%5D%29%5E1%2B%5Cbinom%7B9%7D%7B7%7DP%5BC%5D%5E7%281-P%5BC%5D%29%5E2%5C%5C%5C%5CP%5BM%5D%3DP%5BC%5D%5E9%2B9P%5BC%5D%5E8%281-P%5BC%5D%29%2B36P%5BC%5D%5E7%281-P%5BC%5D%29%5E2%5C%5C%5C%5CP%5BM%5D%3Dp%5E%7B9n%7D%2B9p%5E%7B8n%7D%281-p%5En%29%2B36p%5E%7B7n%7D%281-p%5En%29%5E2)
We again calculate numerically and graphically and determine that the maximum number of transistor per chip in this conditions is n=138. See graph attached.
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Reading a Cartesian plane
- Coordinates (x, y)
- Slope Formula:

Step-by-step explanation:
<u>Step 1: Define</u>
<em>Find points from graph.</em>
Point (3, 1)
Point (0, 3)
<u>Step 2: Find slope </u><em><u>m</u></em>
Simply plug in the 2 coordinates into the slope formula to find slope <em>m</em>
- Substitute in points [Slope Formula]:

- [Fraction] Subtract:

- [Fraction] Rewrite:

All you need is mulitplication.
300 times 1.15 is 345 miles per hour.
You're welcome!
1.125 times 8=9
1.125times10=11.25
1.125=112.5%
So she will have to enlarge the logo for the large shirt by 12.5%