I think by using data collected by Tycho Brahe
Answer:
The Most Famous Astronomers of All Time. Karl Tate, SPACE.com. ...
Claudius Ptolemy. Bartolomeu Velho, Public Domain. ...
Nicolaus Copernicus. Public Domain. ...
Johannes Kepler. NASA Goddard Space Flight Center Sun-Earth Day. ...
Galileo Galilei. NASA
The Celsius degree is the same size as the Kelvin.
The correct choice is 'C'.
<span>The current is 6 miles per hour.
Let's create a few equations:
Traveling with the current:
(18 + c)*t = 16
Traveling against the current:
(18 - c)*t = 8
Let's multiply the 2nd equation by 2
(18 - c)*t*2 = 16
Now subtract the 1st equation from the equation we just doubled.
(18 - c)*t*2 = 16
(18 + c)*t = 16
(18 - c)*t*2 - (18 + c)*t = 0
Divide both sides by t
(18 - c)*2 - (18 + c) = 0
Now solve for c
(18 - c)*2 - (18 + c) = 0
36 - 2c - 18 - c = 0
36 - 2c - 18 - c = 0
18 - 3c = 0
18 = 3c
6 = c
So the current is 6 mph.
Let's verify that.
(18 + 6)*t = 16
24*t = 16
t = 16/24 = 2/3
(18 - 6)*t = 8
12*t = 8
t = 8/12 = 2/3
And it's verified.</span>
Answer:
Explanation:
Given that,
Force is downward I.e negative y-axis
F = -2 × 10^-14 •j N
Magnetic field is westward, +x direction
B = 8.3 × 10^-2 •i T
Charge of an electron
q = 1.6 × 10^-19C
Velocity and it direction?
Force in a magnetic field is given as
F = q(V×B)
Angle between V and B is 270, check attachment
The cross product of velocity and magnetic field
F =qVB•Sin270
2 × 10^-14 = 1.6 × 10^-19 × V × 8.3 × 10^-2
Then,
v = 2 × 10^-14 / (1.6 × 10^-19 × 8.3 × 10^-2)
v = 1.51 × 10^6 m/s
Direction of the force
Let x be the direction of v
-F•j = v•x × B•i
From cross product
We know that
i×j = k, j×i = -k
j×k =i, k×j = -i
k×i = j, i×k = -j OR -k×i = -j
Comparing -k×i = -j to given problem
We notice that
-F•j = q ( -V•k × B×i)
So, the direction of V is negative z- direction
V = -1.51 × 10^6 •k m/s