Answer:
A) ω = 6v/19L
B) K2/K1 = 3/19
Explanation:
Mr = Mass of rod
Mb = Mass of bullet = Mr/4
Ir = (1/3)(Mr)L²
Ib = MbRb²
Radius of rotation of bullet Rb = L/2
A) From conservation of angular momentum,
L1 = L2
(Mb)v(L/2) = (Ir+ Ib)ω2
Where Ir is moment of inertia of rod while Ib is moment of inertia of bullet.
(Mr/4)(vL/2) = [(1/3)(Mr)L² + (Mr/4)(L/2)²]ω2
(MrvL/8) = [((Mr)L²/3) + (MrL²/16)]ω2
Divide each term by Mr;
vL/8 = (L²/3 + L²/16)ω2
vL/8 = (19L²/48)ω2
Divide both sides by L to obtain;
v/8 = (19L/48)ω2
Thus;
ω2 = 48v/(19x8L) = 6v/19L
B) K1 = K1b + K1r
K1 = (1/2)(Mb)v² + Ir(w1²)
= (1/2)(Mr/4)v² + (1/3)(Mr)L²(0²)
= (1/8)(Mr)v²
K2 = (1/2)(Isys)(ω2²)
I(sys) is (Ir+ Ib). This gives us;
Isys = (19L²Mr/48)
K2 =(1/2)(19L²Mr/48)(6v/19L)²
= (1/2)(36v²Mr/(48x19)) = 3v²Mr/152
Thus, the ratio, K2/K1 =
[3v²Mr/152] / (1/8)(Mr)v² = 24/152 = 3/19
Work in general is given by W=F·d where F is the force vector and d is the displacement vector. The dot symbol is the dot product which is a measure of how parallel two vectors are. It can be replaced by the cosine of the angle between the two vectors and the vectors replaced by their magnitudes. If F and d are parallel then the angle is zero and the cosine is unity. So in this case work can be defined as the product of the magnitudes of the force and distance:
W=Fd
Answer:19.32 m/s
Explanation:
Given
initial speed of car(u)=4.92 m/s
acceleration(a)=
Speed of car after 4.5 s
using equation of motion
v=u+at

v=19.32 m/s
Displacement of the car after 4.5 s



s=54.54 m
These are known as balanced forces because they will not change the motion of the object, and it will remain at rest unless forces become unbalanced- meaning they would be unequal and not opposing.
Answer:
Terminal velocity of object = 12.58 m/s
Explanation:
We know that the terminal velocity is attained when drag force and gravitational force are of the same magnitude.
Gravitational force = mg = 80 * 9.8 = 784 N
Drag force = 
Equating both, we have

So v = 12.58 m/s or v = -15.58 m/s ( not possible)
So terminal velocity of object = 12.58 m/s