Complete Question
An oil tanker has collided with a smaller vessel, resulting in an oil spill in a large, calm-water bay of the ocean. You are investigating the environmental effects of the accident and need to know the area of the spill. The tanker captain informs you that 18000 liters of oil have escaped and that the oil has an index of refraction of n = 1.1. The index of refraction of the ocean water is 1.33. From the deck of your ship you note that in the sunlight the oil slick appears to be blue. A spectroscope confirms that the dominant wavelength from the surface of the spill is 485 nm. Assuming a uniform thickness, what is the largest total area oil slick
Answer:
The largest total area of the oil slick 
Explanation:
From the question we are told that
The volume of oil the escaped is 
The refractive index of oil is 
The refractive index of water is 
The wavelength of the light is 
Generally the thickness of the oil for condition of constructive interference between the oil and the water is mathematically represented as

Where is the order of interference of the light and it value ranges from 1, 2, 3,...n
It is usually take as 1 unless stated otherwise by the question
substituting value
The are can be mathematically evaluated as

Substituting values


I think D. It starts at (0.0) and goes to the correct points so it makes sense
Choice-'b' says the formula for kinetic energy in words.
KE = (1/2) · (M) · (S²)
Answer:
1020g
Explanation:
Volume of can=

Mass of can=80g=
1Kg=1000g
Density of lead=
By using 
We have to find the mass of lead which shot can it carry without sinking in water.
Before sinking the can and lead inside it they are floating in the water.
Buoyancy force =

Where
Density of water
Mass of can
Mass of lead
Volume of can
Substitute the values then we get




Hence, 1020 grams of lead shot can it carry without sinking water.