Answer:
1. about 1.5 AU
2. about 5 AU
3. about 8 light-years
4. about 100,000 light-years
5. less than 0.01 AU
Explanation:
a. Mars is about 1.5 AU from the Sun.
b. Jupiter is about 5 AU from the Sun.
c. The star Sirius is about 8 light-years from the Sun.
d. The diameter of the Milky Way Galaxy is about 100,000 light-years.
e. The distance from Earth to the Moon is less than 0.01 AU.
Note: AU is an acronym for Astronomical Unit and it is a standard unit by astronomers to illustrate the distance between the planetary bodies found in the solar system.
Answer:
charges of the beads is 1.173 ×
C
Explanation:
given data
mass = 3.8589 g = 0.003859 kg
spring length = 5 cm = 0.05 m
extend spring x = 1.5747 cm = 0.15747 m
spring's extension = 0.0116 m
to find out
charges of the beads
solution
we know that force is
force = mass × g
force = 0.003859 × 9.8
force = 0.03782 N
so we know force for mass
force = -kx
so k = force / x
put here force and x value
k = -0.03782 / 0.1575
k = -0.24 N/m
and
force for spring's extension
force = -kx
force = -0.24 ( 0.0116) = 0.002784 N
so here
total length L = 0.05 + 0.0116 = 0.0616
so charges of the beads = force × L² / ke
charges of the beads = 0.002784 × (0.0616)² / (9 ×
)
so charges of the beads = 1.173 ×
C
Es el conjunto de longitudes de onda de todas las radiaciones electromagnéticas
Answer:
fundamental frequency of pipe will be equal to 74 Hz
Explanation:
We have given for a particular organ pipe two adjacent frequency are 296 Hz and 370 Hz
Speed of the sound in air is 343 m/sec
We have to find the fundamental frequency for the pipe
Fundamental frequency will be equal to difference of the two adjacent frequency
So fundamental frequency = 370 - 296 = 74 Hz
So fundamental frequency of pipe will be equal to 74 Hz
Answer:

Explanation:
When the unpolarized light passes through the first polarizer, only the component of the light parallel to the axis of the polarizer passes through.
Therefore, after the first polarizer, the intensity of light passing through it is halved, so the intensity after the first polarizer is:

Then, the light passes through the second polarizer. In this case, the intensity of the light passing through the 2nd polarizer is given by Malus' law:

where
is the angle between the axes of the two polarizer
Here we have

So the intensity after the 2nd polarizer is

And substituting the expression for I1, we find:
