a)
• P = F/A
P = pressure = 630 N/m^2
F = force
A = area
F = mg = 0.50 kg x 9.8 m/s^2 = 4.9 N
m= mass
g= gravity
P = F/A
A = F/P
A = 4.9 N / 630 N/m^2 = 7.778 x 10^-3 m^2
b)
• Area of a circle = pi* radius ^2
7.778 x 10^-3 m^2 = pi* radius ^2
√(7.778 x 10^-3 m^2 / pi ) = radius
radius = 0.04976 m
Answers:
a ) 7.778 x 10^-3 m^2
b) 0.04976 m
That's "<em><u>insolation</u></em>" ... not "insulation".
'Insolation' is simply the intensity of solar radiation over some area.
If 200 kW of radiation is shining on 300 m² of area, then the insolation is
(200 kW) / (300 m²) = <em>(666 and 2/3) watt/m²</em> .
Note that this is the intensity of the <em><u>incident</u></em> radiation. It doesn't say anything
about how much soaks in or how much bounces off.
Wait !
I just looked back at the choices, and realized that I didn't answer the question
at all. I have no idea what "1 sun" means. Forgive me. I have stolen your
points, and I am filled with remorse.
Wait again !
I found it, through literally several seconds of online research.
1 sun = 1 kW/m².
So 2/3 of a kW per m² = 2/3 of 1 sun
That's between 0.5 sun and 1.0 sun.
I feel better now, and plus, I learned something.
Answer: C.
Explanation:
For a parallel-plate capacitor where the distance between the plates is d.
The capacitance is:
C = e*A/d
You can see that the distance is in the denominator, then if we double the distance, the capacitance halves.
Now, the stored energy can be written as:
E = (1/2)*Q^2/C
Now you can see that in this case, the capacitance is in the denominator, then we can rewrite this as:
E = (1/2)*Q^2*d/(e*A)
e is a constant, A is the area of the plates, that is also constant, and Q is the charge, that can not change because the capacitor is disconnected.
Then we can define:
K = (1/2)*Q^2/(e*A)
And now we can write the energy as:
E = K*d
Then the energy is proportional to the distance between the plates, this means that if we double the distance, we also double the energy.