1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
horrorfan [7]
3 years ago
12

a swimmer can swim in still water at a speed of 9.50 m/s. he intends to swim directly across the river that has a downstream cur

rent of 3.75 m/s. what is his velocity relative to the bank?

Physics
2 answers:
Doss [256]3 years ago
7 0
Refer to the diagram shown below.

Still-water speed  = 9.5 m/s
River speed = 3.75 m/s down stream.

The velocity of the swimmer relative to the bank is the vector sum of his still-water speed and the speed of the river.

The velocity relative to the bank is
V = √(9.5² + 3.75²) = 10.21 m/s

The downstream angle is
θ = tan⁻¹ 3.75/9.5 = 21.5°

Answer:  10.2 m/s at 21.5° downstream.

Amanda [17]3 years ago
6 0

The relative velocity of swimmer to the bank is \boxed{10.21\text{ m/s}} and \boxed{21.54^\circ} downstream.

Further Explanation:

The swimmer swims across the river from one end to the other. The river is flowing downstream.

The swimmer will cross the river with some relative velocity.

Given:

The velocity of swimmer is 9.50\text{ m/s}.

The velocity of river is 3.75\text{ m/s} downstream.

Concept:

Consider the direction of velocity of swimmer in positive x-direction.

The velocity of swimmer in vector form:

V_s=9.50\hat i

Consider the direction of downstream current of river in negative y-direction.

The velocity of downstream current in vector form:

V_r=- 3.75\hat j  

The relative velocity of swimmer to the bank is the resultant of two vectors in x and y direction.

Magnitude of relative velocity:

{V_{sr}}=\sqrt{V_r^2+V_s^2}  

Substitute 9.50\text{ m/s} for V_s and 3.75\text{ m/s} for V_r in above equation.

\begin{aligned}{V_{sr}}&=\sqrt{3.75^2+9.50^2}\text{ m/s}\\&=10.21\text{ m/s}\end{aligned}

The magnitude of relative velocity of swimmer is 10.21\text{ m/s} .  

The direction of relative velocity:

\theta={\tan^{-1}}\left({\dfrac{{{V_r}}}{{{V_s}}}}\right)  

Substitute 9.50\text{ m/s} for V_s and -3.75\text{ m/s} for V_r in above equation.

\begin{aligned}\theta&={\tan^{-1}}\left({\dfrac{{{-3.75}}}{{{9.50}}}}\right)\\&=21.54^\circ\end{aligned}

The direction of relative velocity is 21.54^\circ downstream.

Thus, the relative velocity of swimmer to the bank is \boxed{10.21\text{ m/s}} and \boxed{21.54^\circ} downstream.

Learn more:

1. Volume of gas after expansion: brainly.com/question/9979757

2. Principle of conservation of momentum: brainly.com/question/9484203

3. Average translational kinetic energy: brainly.com/question/9078768

Answer Details:

Grade: Middle School

Subject: Physics

Chapter: Scalars and vectors

Keywords:

Swimmer, still, water, speed, 9.50 m/s, intends, directly, river, downstream, current, 3.75 m/s, velocity, relative, bank, vector, direction, 21.5degree and 10.21 m/s.

You might be interested in
If each pull-up requires 300 J and Ben does a pull-up in 2 seconds, what is his power? 150 watts 300 watts 600 watts 750 watts
leonid [27]

Answer:

150 watts

Explanation:

300/2 = 150 watts

6 0
2 years ago
Read 2 more answers
Popular<br> -Gra<br> Question 16<br> Points 1<br> The unit of impulse is
shusha [124]

Answer: The unit of impulse is applied to an object produces an equivalent vector change in its linear momentum, also in the same direction.

Explanation:

4 0
3 years ago
A mass moves back and forth in simple harmonic motion with amplitude A and period T.
Sever21 [200]

a. 0.5 T

- The amplitude A of a simple harmonic motion is the maximum displacement of the system with respect to the equilibrium position

- The period T is the time the system takes to complete one oscillation

During a full time period T, the mass on the spring oscillates back and forth, returning to its original position. This means that the total distance covered by the mass during a period T is 4 times the amplitude (4A), because the amplitude is just half the distance between the maximum and the minimum position, and during a time period the mass goes from the maximum to the minimum, and then back to the maximum.

So, the time t that the mass takes to move through a distance of 2 A can be found by using the proportion

1 T : 4 A = t : 2 A

and solving for t we find

t=\frac{(1T)(2 A)}{4A}=0.5 T

b. 1.25T

Now we want to know the time t that the mass takes to move through a total distance of 5 A. SInce we know that

- the mass takes a time of 1 T to cover a distance of 4A

we can set the following proportion:

1 T : 4 A = t : 5 A

And by solving for t, we find

t=\frac{(1T)(5 A)}{4A}=\frac{5}{4} T=1.25 T

6 0
3 years ago
The first confirmed detections of extrasolar planets occurred in ____________. The first confirmed detections of extrasolar plan
nirvana33 [79]

Answer:

1992 (Early 1990s)

Explanation:

First of all, i would like to define an extrasolar planet as a planet that orbits a start that is not our own.

The first confirmed detections of extrasolar planets occured in the early 1990s (specifically 1992, some say 1995). The name of the first extrasolar planet is widely believed to be called Dimidium or 51 Pegasi b.  

Extrasolar were searched by monitoring stars for slight dimming that might occur as unseen planets pass in front of them.

4 0
3 years ago
A person is pulling their 20 kg luggage using the luggage handle. The handle is at an angle of 56 degrees above the horizontal.
rusak2 [61]

Answer:

The answer to your question is:  a = 1.99 m/s²

Explanation:

Data

mass = 20 kg

angle = 56°

Force = 71 N

horizontal acceleration = ?

Process

Find the horizontal force

                                           cos Ф = adjacent side / hypotenuse

                                          adjacent side = hypotenuse x cosФ

                                          adjacent side = 71 x cos 56

                                          a.s. = 39.70 N

Newton's second law

                                  F = ma

                                  a = F/m

                                 a = 39.7 / 20

                                  a = 1.99 m/s²

4 0
4 years ago
Other questions:
  • Jasper and Gemma are going to play on a teeter totter. Gemma gets on first. When Jasper gets on, Gemma moves into the air, but s
    5·2 answers
  • Why can't theories become laws?
    9·1 answer
  • A(n) 930 N crate is being pushed across a level floor by a force of 400 N at an angle of 20◦ above the horizontal. The coefficie
    6·1 answer
  • Calculate the phase angle (in radians) for a circuit with a maximum voltage of 12 V and w-50 Hz. The voltage source is connected
    10·1 answer
  • When a solid compound dissolves in water,
    10·1 answer
  • An object has a position given by the radius vector r = [2.0 m + (3.00 m/s)t](i)+ [3.0 m - (2.00 m/s^2)t^2](j). Here (i) and (j)
    10·1 answer
  • 1. Using pollen grains placed in water,
    14·1 answer
  • A particle begins to move with uniform acceleration. If in the first second it travels 3m
    12·1 answer
  • Sublimation is used to describe
    7·2 answers
  • a 1500 kg vehicle is traveling on a curved, icy road. the road is banked at an angle of 10.0 degrees and has a radius of curvatu
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!