90 degrees - 30 = 60 degrees
Velocity = (5m/s - 4.35m/s x cos(30)) / cos(60)
Velocity = 2.47 m/s
The answer is D) 2.47 m/s at 61.9 degrees
In the presence of air resistance, a watermelon is launched into the air with 100 j of kinetic energy.
Its kinetic energy is less than 100 J when it reaches its starting point. Its kinetic energy decreases as it encounters air resistance and returns to its starting point. In actuality, some of the energy has been lost because of air resistance. Since we use the ball's original height as a point of reference, there is no potential energy when the ball is in its initial state of motion, and K is its kinetic energy. This total energy is conserved if there is no air resistance, therefore when the ball returns to its starting position, its kinetic energy will remain at 100.
Learn more kinetic energy about here:
brainly.com/question/12669551
#SPJ4
Ionic Compound is the answer
Answer:
Yes
Explanation:
The spring force is given as:
F = kd
F is the spring force
K is the spring constant
d is the magnitude of the stretch
Since k is a constant, therefore, doubling the stretch distance will double the force.
Both stretch distance and force applied can be said to be directly proportional to one another.