If he’s walking at a constant velocity there is no acceleration.
Answer:
The specific heat capacity of the zinc metal measured in this experiment is 0.427 J/g.°C
Explanation:
From the experimental data, the water loses heat because its initial temperature is greater than the final temperature of the mixture. On the other hand, the zinc metal gains heat because its initial temperature is less than the final temperature of the mixture
Heat loss by water = Heat gain by zinc metal
m1C1(T1 - T3) = m2C2(T3 - T2)
m1 is mass of water = 55.4 g
C1 is specific heat capacity of water = 4.2 J/g.°C
m2 is mass of zinc metal = 23.4 g
C2 is specific heat capacity of zinc metal
T1 is the initial temperature of water = 99.61 °C
T2 is the initial temperature of zinc metal = 21.6 °C
T3 is the final temperature of the mixture = 96.4 °C
55.4×4.2(99.61 - 96.4) = 23.4×C2(96.4 - 21.6)
746.9028 = 1750.32C2
C2 = 746.9028/1750.32 = 0.427 J/g.°C
A magnet is a substance which attracts or repels another substance. In a magnet, the atoms are aligned in a particular direction in domains. A magnet has two poles: North pole and South pole. The domains are oppositely aligned in unlike poles. Like poles repel each other where as unlike poles attract each other. Hence, when we bring like poles closer, repulsion would be experienced. In case of unlike poles, they would stick together.
Answer:2.45 m/s
Explanation:
Given
Launch velocity
launch angle
as the vertical velocity first decreasing to zero and then increases to original value so its avg is zero .



thus 

Answer:
Mass spectrometry is an analytical technique that measures the mass-to-charge ratio of ions. The results are typically presented as a mass spectrum, a plot of intensity as a function of the mass-to-charge ratio.
Explanation:
Tip your bucket into a mass spectrometer. It turns the atoms into ions Then it will separate the ions by passing them first through an electric field, then through a magnetic field, so they fan out into a spectrum