Since there is no decimal point in the number given above, the counting for the number of the significant figures will start from the left. Then, the first zero from the left is insignificant. Therefore, in this number there are 6 significant figures.
Answer:
The maximum wavelength of light that could liberate electrons from the aluminum metal is 303.7 nm
Explanation:
Given;
wavelength of the UV light, λ = 248 nm = 248 x 10⁻⁹ m
maximum kinetic energy of the ejected electron, K.E = 0.92 eV
let the work function of the aluminum metal = Ф
Apply photoelectric equation:
E = K.E + Ф
Where;
Ф is the minimum energy needed to eject electron the aluminum metal
E is the energy of the incident light
The energy of the incident light is calculated as follows;

The work function of the aluminum metal is calculated as;
Ф = E - K.E
Ф = 8.02 x 10⁻¹⁹ - (0.92 x 1.602 x 10⁻¹⁹)
Ф = 8.02 x 10⁻¹⁹ J - 1.474 x 10⁻¹⁹ J
Ф = 6.546 x 10⁻¹⁹ J
The maximum wavelength of light that could liberate electrons from the aluminum metal is calculated as;
<span>No sé una palabra que acaba de decir, ¿se puede decir en inglés por favor ???</span>
Answer:
1.it also hleps us to became doctors becuase without physics you can't be a doctor
2.physics needs to be steady whether you like it or not it helps you in life so everybody must study physics no matter is in Uganda USA and plenty more countries there must be physics to dare to be studied