Answer:
A) - 1.8 m/s
Explanation:
As we know that whole system is initially at rest and there is no external force on this system
So total momentum of the system must be conserved
so we will have
now plug in all data into above equation
so correct answer is
A) - 1.8 m/s
Answer:
A friend snorkeling just below the surface of the water along the same shore will detect the sound first.
Explanation:
- The speed of sound in water medium is faster than that through the air.
- Sound propagates through the medium by transferring through the molecules on it. Water has more closely packed molecules due to which the speed is faster.
- In fact, the sound's speed in water is almost four times faster than that in the air.
- So the guy in the water surface gets to hear sound faster than the one in sore.
Answer:
The unrealistically large acceleration experienced by the space travelers during their launch is 2.7 x 10⁵ m/s².
How many times stronger than gravity is this force? 2.79 x 10⁴ g.
Explanation:
given information:
s = 220 m
final speed, vf = 10.97 km/s = 10970 m/s
g = 9.8 m/s²
he unrealistically large acceleration experienced by the space travelers during their launch
vf² = v₀²+2as, v₀ = 0
vf² = 2as
a =vf²/2s
= (10970)²/(2x220)
= 2.7 x 10⁵ m/s²
Compare your answer with the free-fall acceleration
a/g = 2.7 x 10⁵/9.8
a/g = 2.79 x 10⁴
a = 2.79 x 10⁴ g
Answer:
When you have to do an English-Metric (SI) length conversion, and you already know the English units of length (miles, yards, feet, inches, etc.), all you need to remember is one simple relationship, and you can readily convert any length in the SI system, to the equivalent length in the other.
1 foot (ft) = 0.3048 meters (m)
BIn this case you need your answer in inches. You (hopefully) know there are 12 inches in a foot, so you just do the following:
1 inch (in) = 1/12 ft = 0.3048/12 m = 0.0254 m