Let's use ' t ' to represent half of the time, in hours.
The distance traveled in the first half of the time is (80 t) km.
The distance traveled in the last half of the time is (40 t) km.
The total distance covered is (80t + 40t) = (120t) km.
You said that the total distance covered was 60 km,
so ...
120 t = 60 km
Divide each side by 120 : t (half of the time) = 0.5 hour
Average speed = (total distance covered) / (time to cover the distance)
= (60 km) / (1 hour)
= 60 km/hr .
Answer:
you should sell your skateboards at $240
Explanation:
The price p to sell your skateboards for so that there is neither a shortage nor a surplus is the price that makes equal the quantity of sales and the quantity of supply, so p is equal to:
q (sales) = q (supply)
-3p + 700 = 2p - 500
700 + 500 = 2p + 3p
1200 = 5p
1200/5 = p
$240 = p
Explanation:
It is given that,
Mass of concrete pilling, m = 50 kg
Diameter of wire, d = 1 mm
Radius of wire, r = 0.0005 m
Length of wire, L = 11.2
Young modulus of steel, 
The young modulus of a wire is given by :





So, the wire will stretch 0.034 meters. Hence, this is the required solution.
Answer:
Required rate of return = 18.5 %
Explanation:
given,
rate of inflection = 4 %
risk free rate = 3 %
market risk premium = 5 %
firm has a beta = 2.30
rate of return has averaged 15.0% over the last 5 years
now,
Nominal risk free rate = risk free rate + inflation
= 3% + 4%
= 7%
Required rate of return = Nominal risk free rate + β (RPM)
= 7% + 2.3 x 5.0%
Required rate of return = 18.5 %
Answer:
Now e is due to the ring at a
So
We say
1/4πEo(ea/ a²+a²)^3/2
= 1/4πEo ea/2√2a³
So here E is faced towards the ring
Next is E due to a point at the centre
So
E² = 1/4πEo ( e/a²)
Finally we get the total
Et= E²-E
= e/4πEo(2√2-1/2√2)
So the direction here is away from the ring