Answer:
The stress is calculated as 
Solution:
As per the question:
Length of the wire, l = 75.2 cm = 0.752 m
Diameter of the circular cross-section, d = 0.560 mm = 
Mass of the weight attached, m = 25.2 kg
Elongation in the wire, 
Now,
The stress in the wire is given by:
(1)
Now,
Force is due to the weight of the attached weight:
F = mg = 
Cross sectional Area, A = 
Using these values in eqn (1):
Answer:
Explanation:
Conclusion is simple you can just say that it is the value written in words form only.
Nothing else is written about it
Answer:
Explanation:
Dear Student, this question is incomplete, and to attempt this question, we have attached the complete copy of the question in the image below. Please, Kindly refer to it when going through the solution to the question.
To objective is to find the:
(i) required heat exchanger area.
(ii) flow rate to be maintained in the evaporator.
Given that:
water temperature = 300 K
At a reasonable depth, the water is cold and its temperature = 280 K
The power output W = 2 MW
Efficiency
= 3%
where;



However, from the evaporator, the heat transfer Q can be determined by using the formula:
Q = UA(L MTD)
where;

Also;




LMTD = 4.97
Thus, the required heat exchanger area A is calculated by using the formula:

where;
U = overall heat coefficient given as 1200 W/m².K

The mass flow rate:

long does it take to boil away 2.40 kg of the liquid.
Boiling point of He is 
Latent heat of vapourization 
Power of electrical heater 
mass of liquid is 
amount of heat required to boil

Power 

The heat or energy that is absorbed or released during a substance's phase shift is known as latent heat. It could go from a solid to a liquid or from a liquid to a gas, or vice versa. Enthalpy, a characteristic of heat, is connected to latent heat.
The heat that is used or lost as matter melts and transitions from a solid to a fluid form at a constant temperature is known as the latent heat of fusion.
Due to the fact that during softening the heat energy anticipated to transform the substance from solid to fluid at air pressure is the latent heat of fusion and that the temperature remains constant during the process, the "enthalpy" of fusion is a latent heat. The enthalpy change of any quantity of material during dissolution is known as the latent heat of fusion.
For learn more about Latent heat of vaporization, visit: brainly.com/question/14980744
#SPJ4
In this item, we are given with the x-component of the velocity. The y-component is equal to 0 m/s. The time it takes for it to reach the volume can be related through the equation,
d = V₀t + 0.5gt²
Substituting the known values,
225 = (0 m/s)(t) + (0.5)(9.8)(t²)
Simplifying,
t = 6.776 s
To determine the distance of the student from the edge of the building, we multiply the x-component by the calculated time.
range = (12.5 m/s)(6.776 s)
range = 84.7 m
<em>Answer: 84.7 m</em>