Answer:
Explanation:
Change in car's momentum = 700 * [4.5 - {-29)] = 23,450 kgm/s
Answer:
0.147 J
Explanation:
The total energy that has been transformed into thermal energy is equal to the loss of gravitational potential energy between the initial situation (bob at h=0.5 m above the ground) and the final situation (bob back but at h=0.45 m above the ground).
Therefore, we have

where
m = 0.3 kg is the mass of the bob
g = 9.8 m/s^2
h1 = 0.5 m is the initial height
h2 = 0.45 m is the final height
Substituting, we find the thermal energy

Therefore, the energy transformed into thermal energy is 0.147 J.
Answer:
D
Explanation:
I would say much too small as there is a significant portion of the plant that is UNDER water.....
( Really depends on how deep the water is...if it is shallow water it would be just a little too small)
<u>Answer:</u>
<em>A water strider can walk along the surface of earth due to the surface tension of water.
</em>
<u>Explanation:</u>
Fluids have a <em>tendency to shrink to minimum possible surface area</em> and this is called surface tension. It usually occurs due to the greater force of cohesion between molecules of same substance when compared to adhesive force between molecules of different substances. Objects with greater densities can float along water surface due to the <em>role played by surface tension.
</em>
When insects walk along the water surface they are pulled down due to gravity. But the force of attraction between the legs of the insect and water molecules is minimal. Thus the surface tension would always tend to maintain the <em>flatness of water overcoming</em> the push by the legs of the strider.
When the insect’s weight pulls it down , the surface tension pushes it upwards overcoming this force of gravity. This is how<em> water striders move along the surface of water. </em>
Answer:
the potential energy of this body is 245 J.
Explanation:
Given;
mass of the body, m = 250 g = 0.25 kg
height from which the body was dropped, h = 100 m
acceleration due to gravity, g = 9.8 m/s²
The potential energy of this body is calculated as;
P.E = mgh
substitute the given values and solve for the potential energy of this body;
P.E = 0.25 x 9.8 x 100
P.E = 245 J.
Therefore, the potential energy of this body is 245 J.