Answer:
q = - 93.334 nC
Explanation:
GIVEN DATA:
Radius of ring 73 cm
charge on ring 610 nC
ELECTRIC FIELD p FROM CENTRE IS AT 70 CM
E = 2000 N/C
Electric field due tor ring is guiven as
![E = \frac{KQx}{[x^2+ R^2]^{3/2}}](https://tex.z-dn.net/?f=E%20%3D%20%5Cfrac%7BKQx%7D%7B%5Bx%5E2%2B%20R%5E2%5D%5E%7B3%2F2%7D%7D)

E1 = 3714.672 N/C
electric field due to point charge q



now the eelctric charge at point P is
E = E1 + E2
solving for q
q = - 93.334 nC
Answer:
128.9 N
Explanation:
The force exerted on the golf ball is equal to the rate of change of momentum of the ball, so we can write:

where
F is the force
is the change in momentum
is the time interval
The change in momentum can be written as

where
m = 0.04593 kg is the mass of the ball
u = 0 is the initial velocity of the ball
is the final velocity of the ball
Substituting into the original equation, we find the force exerted on the golf ball:

Answer:
Its either A. Or C cause ive had a question like this before So Im sure But if not Then Im so sorry
14 ms is required to reach the potential of 1500 V.
<u>Explanation:</u>
The current is measured as the amount of charge traveling per unit time. So the charge of electrons required for each current is determined as the product of current with time.

As two different current is passing at two different times, the net charge will be the different in current. So,

The electric voltage on the surface of cylinder can be obtained as the ratio of charge to the radius of the cylinder.

Here
, q is the charge and R is the radius. As
and R =17 cm = 0.17 m, then the voltage will be

The time is required to find to reach the voltage of 1500 V, so


So, 14 ms is required to reach the potential of 1500 V.
The density is determined on the steepness of the slope. The greater the density is bases upon the steepest slope. To conclude, I'd say Line A has the steepest slope therefore has the greatest density.