B the goose with most mass
this is because momentum=mass x acceleration
so a larger mass will give a larger momentum ( acceleration stays constant)
Answer:
F = 2.40 ×
N
Explanation:
given data
charge q1 = 3.95 nC
x= 0.198 m
charge q2 = 4.96 nC
x= -0.297 m
solution
force on a point charge kept in electric field F = E × q ................1
here E is the magnitude of electric field and q is the magnitude of charge
and
first we will get here electric field at origin
So net field at origin is
E = (Kq2÷r2²) - (kq1÷r1²) ...............2
put here value
E = 9[(4.96÷0.297²)-(3.95÷0.198²)]
E = 400.72 N/C ( negative x direction )
so that force will be
F = 6 ×
× 400.72
F = 2.40 ×
N
Matter is defined as anything that has mass and occupies space, it may be classified into three states, solid, liquids or gases. Molecules is the smallest particle of an element that has the chemical properties of the element or the compound. it contains two or more atoms that are joined together. A pure substance is a matter that has distinct properties and a composition that does not vary from sample to sample. Thus the correct answer is C
Answer:
b. end on the n = 2 shell.
Explanation:
When hydrogen atoms move from higher energy level to lower energy level then it shows spectral lines and these lines are known as Balmer series. The only four lines are visible and other liens are not in the visible range.
The Balmer series formed by hydrogen electron and it ends when n = 2.
Therefore the answer is b.
b. end on the n = 2 shell.
Answer
When an electron makes transition from a state of higher energy to a state of lower energy it does so by emitting energy in form of radiation in the visible spectrum of light.
Since the basic postulates of the atomic theory is that the energy that the electron possess in it's orbit's takes only discrete values and cannot take any random value thus when an electron makes a transition from a state of higher energy to state of lower energy it will emit radiation with energy equal to difference between the energy levels of the 2 orbit's thus we only observe discrete lines.
Mathematically when an electron makes a transition between states the wavelength of light it releases is given by

where
is Rydberg constant
is upper energy level
is lower energy level
thus we can see that only discrete wavelength's are released and not continuous wavelength's of light.