First, we must find the vertical distance traveled upwards by the ball due to the throw. For this, we will use the formula:
2as = v² - u²
Because the final velocity v is 0 in such cases
s = -u²/2a; because both u and a are downwards, the negative sign cancels
s = 14.5² / 2*9.81
s = 10.72 meters
Next, to find the time taken to reach the ground, we need the height above the ground. This is:
45 + 10.72 = 55.72 m
We will use the formula
s = ut + 0.5at²
to find the time taken with the initial velocity u = 0.
55.72 = 0.5 * 9.81 * t²
t = 3.37 seconds
It is potential energy because the band is not in movement, th band has the potential to move.
Answer:
the pressure due to the water on the diver is 200,000 pascal
pressure = height × density × acceleration due to gravity
p = 20×1000×10
p=200,000 pascal
I attached the full question.
We know that for a parallel-plate capacitor the surface charge density is given by the following formula:

Where V is the voltage between the plates and d is separation.
Voltage is by definition:

Voltage is analog to the mechanical work done by the force.
Above formula is correct only If the field is constant, and we can assume that it is since no function has been given.
The charge density would then be:

Please note that elecric permittivity of air is very close to elecric permittivity of vacum, it is common to use them <span>interchangeably</span>.
Answer:
v1=18.46m/s
v2=29.8cm/s
Explanation:
We know that

the equation of the motion is

we can calculate w by using

Hence, we have that

the speed will be

hope this helps!