<span>1. By Ilkka Cheema<span><span>2. </span>Newton’s 1st Law The first law of motion sates that an object will not change its speed or direction unless an unbalanced force (a force which is distant from the reference point) affects it. Another name for the first law of motion is the law of inertia. If balanced forces act on an object it doesn’t accelerate or change direction. This means it doesn’t change its velocity and it doesn’t have momentum.</span><span><span>3. </span>Examples of Newton’s 1st Law If you slide a hockey puck on ice, eventually it will stop, because of friction on the ice. It will also stop if it hits something, like a player’s stick or a goalpost. If you kicked a ball in space, it would keep going forever, because there is no gravity, friction or air resistance going against it. It will only stop going in one direction if it hits something like a meteorite or reaches the gravity field of another planet. If you are driving in your car at a very high speed and hit something, like a brick wall or a tree, the car will come to an instant stop, but you will keep moving forward. This is why cars have airbags, to protect you from smashing into the windscreen.</span><span><span>4. </span>Newton’s 2nd Law The second law of motion states that acceleration is produced when an unbalanced force acts on an object (mass). The more mass the object has the more net force has to be used to move it.</span><span><span>5. </span>Examples of Newton’s 2nd Law If you use the same force to push a truck and push a car, the car will have more acceleration than the truck, because the car has less mass. It is easier to push an empty shopping cart than a full one, because the full shopping cart has more mass than the empty one. This means that more force is required to push the full shopping cart.</span><span><span>6. </span>Newton’s 3rd Law The third law of motion sates that for every action there is a an equal and opposite reaction that acts with the same momentum and the opposite velocity.</span><span><span>7. </span>Examples of Newton’s 3rd Law When you jump off a small rowing boat into water, you will push yourself forward towards the water. The same force you used to push forward will make the boat move backwards. When air rushes out of a balloon, the opposite reaction is that the balloon flies up. When you dive off of a diving board, you push down on the springboard. The board springs back and forces you into the air.</span></span>
Answer:
Utilization, effects
Explanation:
The conductors that carry the current to electrical devices and utilization equipment are the heart of all electrical systems. There are associated effects whenever current flows through a conductor.
The transfer of energy means, in convention process, transport of matter. In this case, hot water has lower density than cool water. The water with less density ascends and leaves gaps that are occupied with cooler water "packages".
Answer:
The bullet's initial speed is 243.21 m/s.
Explanation:
Given that,
Mass of the bullet, 
Mass of the pendulum, 
The center of mass of the pendulum rises a vertical distance of 10 cm.
We need to find the bullet's initial speed if it is assumed that the bullet remains embedded in the pendulum. Let it is v. In this case, the energy of the system remains conserved. The kinetic energy of the bullet gets converted to potential energy for the whole system. So,
V is the speed of the bullet and pendulum at the time of collision
Now using conservation of momentum as :
Put the value of V from equation (1) in above equation as :

So, the bullet's initial speed is 243.21 m/s.