Answer:
Radiation is the transfer of thermal energy by waves that can travel through empty space. When the waves reach objects, they transfer thermal energy to the objects.
Answer:
MgSO4.7H2O
Explanation:
Let the formula for the hydrated magnesium sulphate be MgSO4.xH2O
Mass of the hydrated salt (MgSO4.xH2O) = 12.845g
Mass of anhydrous salt (MgSO4) = 6.273g
Mass of water molecule(xH2O) = Mass of the hydrated salt — Mass of anhydrous salt = 12.845 — 6.273 = 6.572g
Now,we can obtain the number of mole of water molecule present in the hydrated salt as follows:
Molar Mass of hydrated salt (MgSO4.xH2O) = 24 + 32 + (16x4) + x(2 + 16) = 24 + 32 + 64 + x(18) = 120 + 18x
Mass of xH2O/ Molar Mass of MgSO4.xH2O = Mass of water / mass of hydrated salt
18x/120 + 18x = 6.572/12.845
Cross multiply to express in linear form
18x x 12.845 = 6.572(120 + 18x)
231.21x = 788.64 + 118.296x
Collect like terms
231.21x — 118.296x = 788.64
112.914x = 788.64
Divide both side by 112.914
x = 788.64 /112.914
x = 7
Therefore the formula for the hydrated salt (MgSO4.xH2O) is MgSO4.7H2O
Answer:
sp³d¹ hybridization
Explanation:
Given Cl as central element with three F substrates ...
The VSEPR structure indicates 5 hybrid orbitals that contain 2 diamagnetic orbitals (non-bonded e⁻-pairs) and 3 paramagnetic orbitals (single, non-paired electron for covalent bonding with fluorine) giving a trigonal bypyrimidal parent with a T-shaped geometry.
Valence bond theory predicts the following during bonding:
Cl:[Ne]3s²3p²p²p¹3d⁰
=> [Ne]3s²p²p¹p¹d¹
=> [Ne]3(sp³d)²(sp³d)²(sp³d)¹(sp³d)¹(sp³d)¹
giving 3 ( [Cl](sp³d) - [F]2p¹ ) sigma bonds and 2 non-bonded pairs on Cl.
Note the following images:
Non-bonded electron pairs are in plane of parent geometry and Fluorides covalently bonded to central element Chloride forming the T-shaped geometry.
The answers are :
1 - F
2- T
False. It is a fluid as it is in its liquid state possessing qualities of a liquid just that it is viscious