Thus problem is providing us with the mass of iron (III) oxide as 12.4 g so the moles are required and found to be 0.0776 mol after the calculations:
<h3>Mole-mass relationships:</h3>
In chemistry, we use mole-mass relationships in order to calculate grams from moles and vice versa. In this case, since we are given the mass of iron (III) oxide as 12.4 g one can calculate the moles by firstly quantifying its molar mass:

Then, we prepare a conversion factor in order to cancel out the grams and thus, get moles:

Learn more about mole-mass relationships: brainly.com/question/18311376
Answer:
B
Explanation: hoped this helped!!!
Dalton hypothesized that atoms are indivisible and that all atoms of an element are identical. It is now known that <span>atoms are divisible. The answer is letter C</span>
Answer:
There is a mass of 154 Grams of Carbon Dioxide.
Explanation:
One mole is equal to 6.02 × 10^23 particles.
This means we have 1.05 X 10^24 total particles of Ethane.
Each ethane particle contains 2 carbon atoms.
If every particle of ethane is burned, we will end up with 2.10 x 10^24 molecules of Carbon Dioxide (Particles of Methane x 2, since each Methane particle contains 2 carbon atoms)
Carbon Dioxide has a molar mass of 44.01 g/mol
So if we take our amount of Carbon Dioxide molecules and divide it by 1 mole, ((2.10 x 10^24)/(6.02 x 10^23) = 3.49) we find that we have 3.49 moles of Carbon Dioxide.
Now all we need to do is multiply our moles of carbon dioxide(3.49) by it's molar mass(44.01) while accounting for significant digits.
What you should end up with is 154 Grams of Carbon Dioxide.
Hope this helps (And more importantly I hope I didn't make any errors in my math lol)
As a side note this is all assuming that this takes place at STP conditions.
When the balanced equation for this reaction is:
2Fe + 3H2O → Fe2O3 + 3H2
and according to the vapour pressure formula:
PV= nRT
when we have P is the vapor pressure of H2O= 0.121 atm
and V is the volume of H2O = 4.5 L
and T in Kelvin = 52.5 +273 = 325.5 K
R= 0.08205 atm-L/g mol-K
So we can get n H2O
So, by substitution:
n H2O = PV/RT
= (0.121*4.5)/(0.08205 * 325.5) = 0.02038 gmol
n Fe2O3 = 0.02038 * (1Fe2O3/ 3H2O) = 0.00679 gmol
Note: we get (1FeO3/3H2O) ratio from the balanced equation.
we can get the Mass of Fe2O3 from this formula:
Mass = number of moles * molecular weight
when we have a molecular weight of Fe2O3 = 159.7
= 0.00679 * 159.7 = 1.084 g
∴ 1.084 gm of Fe2O3 will produced