Answer:
The answer to the question is as follows
The acceleration due to gravity for low for orbit is 9.231 m/s²
Explanation:
The gravitational force is given as
Where = Gravitational force
G = Gravitational constant = 6.67×10⁻¹¹
m₁ = mEarth = mass of Earth = 6×10²⁴ kg
m₂ = The other mass which is acted upon by and = 1 kg
rEarth = The distance between the two masses = 6.40 x 10⁶ m
therefore at a height of 400 km above the erth we have
r = 400 + rEarth = 400 + 6.40 x 10⁶ m = 6.80 x 10⁶ m
and = = 9.231 N
Therefore the acceleration due to gravity = /mass
9.231/1 or 9.231 m/s²
Therefore the acceleration due to gravity at 400 kn above the Earth's surface is 9.231 m/s²
King Arthur's knights use a catapult to launch a rock from their vantage point on top of the castle wall, 14 m above the moat. The rock is launched at a speed of 27 m/s and an angle of 32degrees above the horizontal.
Answer:
- This means that the integral of the square modulus over the space is dimensionless.
Explanation:
We know that the square modulus of the wavefunction integrated over a volume gives us the probability of finding the particle in that volume. So the result of the integral
must be dimensionless, as represents a probability.
As the differentials has units of length
for the integral to be dimensionless, the units of the square modulus of the wavefunction has to be:
taking the square root this gives us :
<h2>Answer </h2>
<h3>1) iron </h3>
<h3>2) Aluminium </h3>
<h3>3) sliver </h3>
<h3>4) copper </h3>
I hope it's helpful for you ☺️
A meter is 100 meters. So a hundredth of a meter stick is a centimeter.<span />