1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
wariber [46]
3 years ago
14

Which of the following is NOT accelerating?

Physics
1 answer:
ivolga24 [154]3 years ago
7 0
I would say the answer to your question is A Ferris wheel turning at a constant speed. The reasoning behind this answer is the fact that traveling in a constant direction at a constant speed is not accelerating. The Ferris wheel is the only option that fits this description. The last option would be incorrect due to independent causes such as speed limit changes as well as turns and stops on the highway.
You might be interested in
If the car’s speed decreases at a constant rate from 64 mi/h to 30 mi/h in 3.0 s, what is the magnitude of its acceleration, ass
mixas84 [53]

Answer:3.874 m/s^2

Explanation:

Given

Car speed decreases at a constant rate from 64 mi/h to 30 mi/h

in 3 sec

60mi/h \approx 26.8224m/s

34mi/h \approx 15.1994 m/s

we know acceleration is given by =\frac{velocity}{Time}

a=\frac{15.1994-26.8224}{3}

a=-3.874 m/s^2

negative indicates that it is stopping the car

Distance traveled

v^2-u^2=2as

\left ( 15.1994\right )^2-\left ( 26.8224\right )^2=2\left ( -3.874\right )s

s=\frac{488.419}{2\times 3.874}

s=63.038 m

7 0
3 years ago
A hockey puck is sliding across a frozen pond with an initial speed of 9.3 m/s. It comes to rest after sliding a distance of 42.
kondaur [170]

Answer:

The coefficient of kinetic friction between the puck and the ice is 0.11

Explanation:

Given;

initial speed, u = 9.3 m/s

sliding distance, S = 42 m

From equation of motion we determine the acceleration;

v² = u² + 2as

0 = (9.3)² + (2x42)a

- 84a = 86.49

a = -86.49/84

|a| = 1.0296

F_k = \mu_k N = ma

where;

Fk is the frictional force

μk is the coefficient of kinetic friction

N is the normal reaction = mg

μkmg = ma

μkg = a

μk = a/g

where;

g is the gravitational constant = 9.8 m/s²

μk = a/g

μk = 1.0296/9.8

μk = 0.11

Therefore, the coefficient of kinetic friction between the puck and the ice is 0.11

3 0
3 years ago
The plug has a diameter of 30 mm and fits within a rigid sleeve having an inner diameter of 32 mm. Both the plug and the sleeve
Katena32 [7]

Answer:

P=740 KPa

Δ=7.4 mm

Explanation:

Given that

Diameter of plunger,d=30 mm

Diameter of sleeve ,D=32 mm

Length .L=50 mm

E= 5 MPa

n=0.45

As we know that

Lateral strain

\varepsilon _t=\dfrac{D-d}{d}

\varepsilon _t=\dfrac{32-30}{30}

\varepsilon _t=0.0667

We know that

n=-\dfrac{\epsilon _t}{\varepsilon _{long}}

\varepsilon _{long}=-\dfrac{\epsilon _t}{n}

\varepsilon _{long}=-\dfrac{0.0667}{0.45}

\varepsilon _{long}=-0.148

So the axial pressure

P=E\times \varepsilon _{long}

P=5\times 0.148

P=740 KPa

The movement in the sleeve

\Delta =\varepsilon _{long}\times L

\Delta =0.148\times 50

Δ=7.4 mm

6 0
3 years ago
The time delay between transmission and the arrival of the reflected wave of a signal using ultrasound traveling through a piece
Brilliant_brown [7]

Answer:

10.01 cm

Explanation:

Given that,

The time delay between transmission and the arrival of the reflected wave of a signal using ultrasound traveling through a piece of fat tissue was 0.13 ms.

The average propagation speed for sound in body tissue is 1540 m/s.

We need to find the depth when the reflection occur. We know that, the distance is double when transmitting and arriving. So,

v=\dfrac{2d}{t}\\\\d=\dfrac{vt}{2}\\\\d=\dfrac{1540\times 0.13\times 10^{-3}}{2}\\\\d= $$0.1001\ m

or

d = 10.01 cm

So, the reflection will occur at 10.01 cm.

8 0
2 years ago
a u tube contains a liquid of an unknown density an oil of density is poured into the right arm of the tube until the oil column
scoray [572]

Answer:

The answer is "1155\ \frac{kg}{m^3}"

Explanation:

Please find the complete question in the attached file.

p = p_0 + ?gh

pi = pressure only at two liquids' devices

PA = pressure atmosphere.

1 = oil density

2 = uncertain fluid density

h_1 = 11 \ cm\\\\h_2= 3 \ cm

The pressures would be proportional to the quantity 11-3 = 8 cm from below the surface at the interface between both the oil and the liquid.

\to p_A + ?2g(h_1 - h_2) = p_A + ? 1gh_1\\\\\to ?2 = \frac{?1h_1}{(h_1 - h_2)} \\\\

       = \frac{840 \frac{kg}{m^3}}{\frac{11}{8}} \\\\= 1155\ \frac{kg}{m^3}

8 0
3 years ago
Other questions:
  • Please describe the relationship between the lithosphere and asthenosphere making sure to incorporate these terms: divergent bou
    15·1 answer
  • Compare the processes and locations of cellular respiration and photosynthesis. Explain why it is accurate to say that life on E
    5·1 answer
  • This person does work to stretch the rubber band. When will the potential energy be the greatest?
    5·1 answer
  • When calculating the net electrostatic force, a negative value indicates that the two charged objects involved __________.
    8·1 answer
  • The terminal velocity of a person falling in air depends upon the weight and the area of the person facing the fluid.
    5·1 answer
  • Work done(as a measure of energy)=force x distance. Use this equation to show that the SI base units of energy are kg m^2 s^-2
    5·1 answer
  • The half-life of iodine-131 is 8.04 days. It’s decay constant equals
    15·1 answer
  • Can anyone help me please​
    7·1 answer
  • On a distance-time graph, which is your independent and dependent variable?
    7·2 answers
  • Your vehicle engine cranks but does not start what is the first corrective action you should perform
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!