The fatal current is 51 mA = 0.051 Ampere.
The resistance is 2,050Ω .
Voltage = (current) x (resistance)
= (0.051 Ampere) x (2,050 Ω) = 104.6 volts .
==================
This is what the arithmetic says IF the information in the question
is correct.
I don't know how true this is, and I certainly don't plan to test it,
but I have read that a current as small as 15 mA through the
heart can be fatal, not 51 mA .
If 15 mA can do it, and the sweaty electrician's resistance is
really 2,050 Ω, then the fatal voltage could be as little as 31 volts !
The voltage at the wall-outlets in your house is 120 volts in the USA !
THAT's why you don't want to stick paper clips or a screwdriver into
outlets, and why you want to cover unused outlets with plastic plugs
if there are babies crawling around.
Answer:
The correct answer is - separation.
Explanation:
Communication practice is the ability to the explaining or showing emotions in various ways such as reading, talking, expressing, performing, writing, and witnessing or showing signs.
Separation is an example of communication practice with that in this case LGBTQ community showing their expression that they exist and different from others by displaying rainbows and wearing pink clothing.
Thus, the correct answer is - separation.
Answer:
(I). The effective cross sectional area of the capillaries is 0.188 m².
(II). The approximate number of capillaries is 
Explanation:
Given that,
Radius of aorta = 10 mm
Speed = 300 mm/s
Radius of capillary 
Speed of blood 
(I). We need to calculate the effective cross sectional area of the capillaries
Using continuity equation

Where. v₁ = speed of blood in capillarity
A₂ = area of cross section of aorta
v₂ =speed of blood in aorta
Put the value into the formula



(II). We need to calculate the approximate number of capillaries
Using formula of area of cross section


Put the value into the formula


Hence, (I). The effective cross sectional area of the capillaries is 0.188 m².
(II). The approximate number of capillaries is 
Answer:
a)
b)
Explanation:
a)
The magnitude of the electric field generated by a charged particle at a distance r is:

With Q the charge of the particle and k the constant (
)
So, the electric field generated by q1 knowing that the point 5.0 cm apart the negative charge is
apart the positive charge is:


and the electric field generated by q2:


Those are the magnitudes of the electric field, but electric field is a vector quantity, so the direction is important. Electric field generated by negative particles points towards the charge and electric field generated by positive particles points away the particle. So, if we define positive direction towards negative particle (x-axis):


Vector quantities satisfy superposition principle, this is
, with E the total electric field.

b) The force is:
,
with q the charge of an electron

Answer:
We conclude that the mass of a rock with a force of 500 N and an acceleration of 75 m/s² is 6.7 kg.
Hence, option D is correct.
Explanation:
Given
To determine
Mass m = ?
Important Tip:
-
The mass of a rock can be found using the formula F = ma
Using the formula

where
- a is the acceleration (m/s²)
now substituting F = 500, and a = 75 m/s² in the formula


switch sides

Divide both sides by 75

simplify

kg
Therefore, we conclude that the mass of a rock with a force of 500 N and an acceleration of 75 m/s² is 6.7 kg.
Hence, option D is correct.