Answer:
The effective spring constant of the firing mechanism is 1808N/m.
Explanation:
First, we can use kinematics to obtain the initial velocity of the performer. Since we know the angle at which he was launched, the horizontal distance and the time in which it's traveled, we can calculate the speed by:

(This is correct because the horizontal motion has acceleration zero). Then:

Now, we can use energy to obtain the spring constant of the firing mechanism. By the conservation of mechanical energy, considering the instant in which the elastic band is at its maximum stretch as t=0, and the instant in which the performer flies free of the bands as final time, we have:

Then, plugging in the given values, we obtain:

Finally, the effective spring constant of the firing mechanism is 1808N/m.
Answer:
Explanation:
Point beneath you forms a beautiful iridescent green
refractive index of Gasoline 
Wavelength of Green light is 
Here light first traverse from air(n=1) to gasoline , it reflects from front surface of gasoline(n=1.38) so it suffers a phase change. After this light reflect from rear surface of gasoline and there is a decrease in refractive index(n=1.38 to n=1.33), so there is no phase change occurs .
For constructive interference

here t= thickness of gasoline film
n=refractive index
for 


The Earth’s average orbital speed expressed in kilometers per hours is 107225.5 Km/hr and the mass of the sun is 2.58 x
Kg
<h3>
Relationship between Linear and angular speed</h3>
Linear speed is the product of angular speed and the maximum displacement of the particle. That is,
V = Wr
Where
Given that the earth orbits the sun at an average circular radius of about 149.60 million kilometers every 365.26 Earth days.
a) To determine the Earth’s average orbital speed, we will make use of the below formula to calculate angular speed
W = 2
/T
W = (2 x 3.143) / (365.26 x 24)
W = 6.283 / 876624
W = 7.2 x
Rad/hr
The Earth’s average orbital speed V = Wr
V = 7.2 x
x 149.6 x 
V = 107225.5 kilometers per hours.
b) Based on the information given in this question, to calculate the approximate mass of the Sun, we will use Kepler's 3rd law
M = (4
) / G
M = (4 x 9.8696 x 3.35 x
) / (6.67 x
x 7.68 x
<em>)</em>
<em>M = 1.32 x </em>
/ 51.226
M = 2.58 x
Kg
Therefore, the Earth’s average orbital speed expressed in kilometers per hours is 107225.5 Km/hr and the mass of the sun is 2.58 x
Kg
Learn more about Orbital Speed here: brainly.com/question/22247460
#SPJ1