Answer electrons are negative. Protons are positive, and neutrons are neutral
Answer:
Explanation:
a )
While breaking initial velocity u = 62.5 mph
= 62.5 x 1760 x 3 / (60 x 60 ) ft /s
= 91.66 ft / s
distance trvelled s = 150 ft
v² = u² - 2as
0 = 91.66² - 2 a x 150
a = - 28 ft / s²
b ) While accelerating initial velocity u = 0
distance travelled s = .24 mi
time = 19.3 s
s = ut + 1/2 at²
s is distance travelled in time t with acceleration a ,
.24 = 0 + 1/2 a x 19.3²
a = .001288 mi/s²
= 2.06 m /s²
c )
If distance travelled s = .25 mi
final velocity v = ? a = .001288 mi / s²
v² = u² + 2as
= 0 + 2 x .001288 x .25
= .000644
v = .025 mi / s
= .0025 x 60 x 60 mi / h
= 91.35 mph .
d ) initial velocity u = 59 mph
= 86.53 ft / s
final velocity = 0
acceleration = - 28 ft /s²
v = u - at
0 = 86.53 - 28 t
t = 3 sec approx .
If you did this then it could lead to cheating or someone else getting hurt.
The expression commonly used for potential gravitational energy is just simplification. It is actually just the first term in Taylor expansion of the real expression.
In general, the potential energy of gravitational field is defined as:

Where G is universal gravitational constant, and r is the distance between the objects centers of mass. Negative sign represents the bound state.
Since we are not given the mass of the planet we have to calculate it.

This formula can be used for any planet. It gives you the gravitational acceleration on the planet's surface. We can use it to calculate the planet's mass:

Now we can calculate the potential energy of that cannonball when it reaches its maximum height.

When we plug in the numbers we get:

The potential energy has to be equal to the kinetic energy.
The mass of an object affects how powerful the attractive force is. To feel the pull / gravitation the mass of the object would have to be huge, bigger than that of massive buildings