Answer:
a = 0m/s²
Explanation:
Average acceleration = (change in velocity)/(time it takes). Since the car's change in velocity is zero, its acceleration is zero.
Answer:
K = 373.13 N/m
Explanation:
The force of the spring is equals to:
Fe - m*g = 0 => Fe = m*g
Using Hook's law:
K*X = m*g Solving for K:
K = m/X * g
In this equation, m/X is the inverse of the given slope. So, using this value we can calculate the spring's constant:
K = 10 / 0.0268 = 373.13N/m
Answer:
Explanation:
1 )
We shall apply conservation of momentum law to solve the problem.
mv = ( M +m) V , m and M are masses of small and large object , v is the velocity of small object before collision and V is the velocity of both the objects together after collision .
.5 x .2 = (1.5 + .5)V
V = .05 m /s
2 ) We shall use formula for velocity of object after elastic collision as follows
v₁ = 
m₁ and m₂ are masses of first and second object u₁ and u₂ are their initial velocity and v₁ and v₂ are their final velocity.
Putting the values
= 
= - .66 m /s
Since the sign is negative so it will be in opposite direction .
Answer:
1992 (Early 1990s)
Explanation:
First of all, i would like to define an extrasolar planet as a planet that orbits a start that is not our own.
The first confirmed detections of extrasolar planets occured in the early 1990s (specifically 1992, some say 1995). The name of the first extrasolar planet is widely believed to be called Dimidium or 51 Pegasi b.
Extrasolar were searched by monitoring stars for slight dimming that might occur as unseen planets pass in front of them.