Answer:
(a) 1.414 km
(b) 1.06 m/s
Explanation:
(a) For John:
Distance = 1 km north and then 1 km east
Speed = 1.5 m/s
total distance traveled = 1 + 1 = 2 km = 2000 m
Time taken to travel = Distance / speed
t = 2000 / 1.5 = 1333.3 seconds
Displacement =
(b) For jane :
Time is same as john = 1333.33 second
Distance = 1.414 km = 1414 m
Speed = distance / time = 1414 / 1333.33 = 1.06 m/s
The power dissipated across a component can be calculated through the formula P=I^2xR
Substituting the values in we get P=(0.5)^2x10=2.5W
Answer:
The approximate number of decays this represent is
Explanation:
From the question we are told that
The amount of Radiation received by an average american is 
The source of the radiation is 
Generally

Therefore 
Also 
Therefore 
An Average american weighs 88.7 kg
The total energy received is mathematically evaluated as

Cross-multiplying and making x the subject


Therefore the total energy deposited is 
The approximate number of decays this represent is mathematically evaluated as
N = 
Where n is the approximate number of decay
Substituting values
Answer:
Maximum height reached by the ball is 32 meters.
Explanation:
It is given that,
If a baseball is project upwards from the ground level with an initial velocity of 32 feet per second, then it's height is a function of time. The equation is given as :
...........(1)
t is the time taken
s is the height attained as a function of time.
Maximum height achieved can be calculated as :


-16 t + 32 = 0
t = 2 seconds
Put the value of t in equation (1) as :

s = 32 meters
So, the maximum height reached by the ball is 32 meters. Hence, this is the required solution.
E. all of the above
An umbrella tends to move upward on a windy day because _<span>A. buoyancy increases with increasing wind speed </span>
<span>B. air gets trapped under the umbrella and pushes it up </span>
<span>C. the wind pushes it up </span>
<span>D. a low-pressure area is created on top of the umbrella </span>