Most ions tend to be D. Salts. Hope this helps!
The products of reaction are ZnSO4 and H2. Since ZnSO4 is in aqueous form (aq), therefore only H2 and water vapor contributes to the overall total pressure in the system.
Total Pressure = 764 torr = H2 partial pressure + Water partial pressure
Since Water partial pressure is 26.74 torr so,
H2 partial pressure = 737.26 torr = 0.97 atm
I think it’s tissue I just did it
This is the electron configuration of neptunium:
<span>Rn 5f4 6d1 7s2
</span>or, if you want to complicate:
<span>1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f4 6d1
</span>Since there are 93 electrons, they make up 5f4 altogether.
<u>Answer:</u> The rate law expression is
and value of 'k' is 
<u>Explanation:</u>
Rate law is defined as the expression which expresses the rate of the reaction in terms of molar concentration of the reactants with each term raised to the power their stoichiometric coefficient of that reactant in the balanced chemical equation.
For the given chemical equation:

Rate law expression for the reaction:
![\text{Rate}=k[NO]^a[O_2]^b](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BNO%5D%5Ea%5BO_2%5D%5Eb)
where,
a = order with respect to nitrogen monoxide
b = order with respect to oxygen
- <u>Expression for rate law for first observation:</u>
....(1)
- <u>Expression for rate law for second observation:</u>
....(2)
- <u>Expression for rate law for third observation:</u>
....(3)
Dividing 1 from 2, we get:

Dividing 1 from 3, we get:

Thus, the rate law becomes:
![\text{Rate}=k[NO]^2[O_2]^1](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BNO%5D%5E2%5BO_2%5D%5E1)
Now, calculating the value of 'k' by using any expression.
Putting values in equation 1, we get:
![8.55\times 10^{-3}=k[0.030]^2[0.0055]^1\\\\k=1.727\times 10^3M^{-2}s^{-1}](https://tex.z-dn.net/?f=8.55%5Ctimes%2010%5E%7B-3%7D%3Dk%5B0.030%5D%5E2%5B0.0055%5D%5E1%5C%5C%5C%5Ck%3D1.727%5Ctimes%2010%5E3M%5E%7B-2%7Ds%5E%7B-1%7D)
Hence, the rate law expression is
and value of 'k' is 