Answer:c
Explanation:
it increases by when it moves
Reduction <span>always results in a lowering of the oxidation number. The reaction of the system above is written as:
</span><span>Cu2+(aq) + Fe(s) --> Cu(s) + Fe2+(aq)
</span>
From the reaction, we see that copper goes from the +2 to a neutral charge. Lowering of the oxidation number happens so this is the element that is being reduced.
Answer:

Explanation:
mass of Fe = 55.85 g
Molar mass of Fe = 55.85 g/mol
<u>Moles of Fe = 55.85 / 55.85 = 1</u>
mass of Cl = 106.5 g
Molar mass of Cl = 35.5 g/mol
Moles of Cl = 106.5 / 35.5 = 3
Taking the simplest ratio for Fe and Cl as:
1 : 3
The empirical formula is = 
Answer:
Mass of Ag produced = 64.6 g
Note: the question is, how many grams of Ag is produced from 19.0 g of Cu and 125 g of AgNO3
Explanation:
Equation of the reaction:
Cu + 2AgNO3 ---> 2Ag + Cu(NO3)2
From the equation above, 1 mole of Cu reacts with 2 moles of AgNO3 to produce 2 moles of Ag and 1 mole of Cu(NO3)2.
Molar mass of the reactants and products are; Cu = 63.5 g/mol, Ag = 108 g/mol, AgNO3 = 170 g/mol, Cu(NO3)2 = 187.5 g/mol
To determine, the limiting reactant;
63.5 g of Cu reacts with 170 * 2 g of AgNO3,
19 g of Cu will react with (340 * 19)/63.5 g of AgNO3 =101.7 g of AgNO3.
Since there are 125 g of AgNO3 available for reaction, it is in excess and Cu is the limiting reactant.
63.5 g of Cu reacts to produce 108 * 2 g of Ag,
19 g of Cu will react to produce (216 * 19)/63.5 g of Ag = 64.6 g of Ag.
Therefore mass of Ag produced = 64.6g
You're going to divide the mass of chlorine within the compound by the mass of the compound, and then multiply the result by 100 to get the answer