1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SCORPION-xisa [38]
3 years ago
7

A ball is dropped off a cliff and falls for 24 seconds. How far did the ball fall from the top down

Physics
1 answer:
DerKrebs [107]3 years ago
4 0

Answer:

9266 feet

Explanation:

with Earth's gravity and long it fell that's as good as it gets if there was no other factors like wind mass weight but your welcome

You might be interested in
What type of infant temperament is generally associated with better adjustment in adulthood?
Rashid [163]
Saying no and not throwing fits and manners.
8 0
3 years ago
Why doesn't every planet have a moon?​
GalinKa [24]

Answer:

Up first are Mercury and Venus. Neither of them has a moon. Because Mercury is so close to the Sun and its gravity, it wouldn't be able to hold on to its own moon. Any moon would most likely crash into Mercury or maybe go into orbit around the Sun and eventually get pulled into it.

5 0
3 years ago
a 300kg motorboat is turned off as it approaches a dock and coasts towards it at .5 m/s. Isaac, whose mass is 62 kg jumps off th
Zolol [24]

-- Before he jumps, the mass of (Isaac + boat) = (300 + 62) = 362 kg,
their speed toward the dock is 0.5 m/s, and their linear momentum is

  Momentum = (mass) x (speed) = (362kg x 0.5m/s) = <u>181 kg-m/s</u>

<u>relative to the dock</u>. So this is the frame in which we'll need to conserve
momentum after his dramatic leap.

After the jump:

-- Just as Isaac is coiling his muscles and psyching himself up for the jump,
he's still moving at 0.5 m/s toward the dock.  A split second later, he has left
the boat, and is flying through the air at a speed of 3 m/s relative to the boat.
That's 3.5 m/s relative to the dock.

    His momentum relative to the dock is (62 x 3.5) = 217 kg-m/s toward it.

But there was only 181 kg-m/s total momentum before the jump, and Isaac
took away 217 of it in the direction of the dock.  The boat must now provide
(217 - 181) = 36 kg-m/s of momentum in the opposite direction, in order to
keep the total momentum constant.

Without Isaac, the boat's mass is 300 kg, so 

                     (300 x speed) = 36 kg-m/s .

Divide each side by 300:  speed = 36/300 = <em>0.12 m/s ,</em> <u>away</u> from the dock.
=======================================

Another way to do it . . . maybe easier . . . in the frame of the boat.

In the frame of the boat, before the jump, Isaac is not moving, so
nobody and nothing has any momentum.  The total momentum of
the boat-centered frame is zero, which needs to be conserved.

Isaac jumps out at 3 m/s, giving himself (62 x 3) = 186 kg-m/s of
momentum in the direction <u>toward</u> the dock.

Since 186 kg-m/s in that direction suddenly appeared out of nowhere,
there must be 186 kg-m/s in the other direction too, in order to keep
the total momentum zero.

In the frame of measurements from the boat, the boat itself must start
moving in the direction opposite Isaac's jump, at just the right speed 
so that its momentum in that direction is 186 kg-m/s.
The mass of the boat is 300 kg so
                                                         (300 x speed) = 186

Divide each side by 300:  speed = 186/300 = <em>0.62 m/s</em>    <u>away</u> from the jump.

Is this the same answer as I got when I was in the frame of the dock ?
I'm glad you asked. It sure doesn't look like it.

The boat is moving 0.62 m/s away from the jump-off point, and away from
the dock.
To somebody standing on the dock, the whole boat, with its intrepid passenger
and its frame of reference, were initially moving toward the dock at 0.5 m/s.
Start moving backwards away from <u>that</u> at 0.62 m/s, and the person standing
on the dock sees you start to move away <u>from him</u> at 0.12 m/s, and <em><u>that's</u></em> the
same answer that I got earlier, in the frame of reference tied to the dock.

  yay !

By the way ... thanks for the 6 points.  The warm cloudy water
and crusty green bread are delicious.


4 0
3 years ago
Vector A has a magnitude of 63 units and points west, while vector B has the same magnitude and points due south. Find the magni
ozzi

Given :

Vector A has a magnitude of 63 units and points west, while vector B has the same magnitude and points due south.

To Find :

The magnitude and direction of

a) A + B .

b) A - B.

Solution :

Let , direction in north is given by +j and east is given by +i .

So , A=-63i and B=63j

Now , A + B is given by :

A+B=-63i+63j

| A+B | = 63\sqrt{2}

Direction of A+B is 45° north of west .

Also , for A-B :

A-B=-63i-63j

|A-B|=63\sqrt{2}

Direction of A-B is 45° south of west .

( When two vector of same magnitude which are perpendicular to each other are added or subtracted the resultant is always 45° from each of them)

Hence , this is the required solution .

4 0
3 years ago
In the diagram, a force of 20 newtons is applied to a block. The block is in dynamic equilibrium. What is the magnitude and dire
sladkih [1.3K]

Answer:B 20 newtons opposite to the direction of the applied force

Explanation:

5 0
3 years ago
Read 2 more answers
Other questions:
  • A force of gravity pulls downward on a book on a table. What force prevents the book from accelerating downward?
    6·2 answers
  • Heat transfer between two substances is affected by specific heat and the
    14·2 answers
  • According to the octet rule, an atom with two electron shells is most stable when it contains eight
    8·1 answer
  • How is energy essential to our way of life?
    5·1 answer
  • A diver who weighs 500 N steps off a diving board that is 10 m above the water. The diver hits the water with kinetic energy of
    12·1 answer
  • The acceleration due to gravity at the north pole of Neptune is approximately 11.2 m/s2. Neptune has mass 1.02×1026 kg and radiu
    11·1 answer
  • A wheel 33 cm in diameter accelerates uniformly from 240 rpm to 360 rpm in 6.5 s. how far will a point on the edge of the wheel
    8·1 answer
  • TP2 2) An example of a 3rd gen lever is:
    10·1 answer
  • What material was the hindenburg made of?
    5·1 answer
  • In your own words, describe how matter is identified.
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!