Answer:
(a) 161.57 N
(b) 0.958 m/s^2
Explanation:
Force applied, F = 220 N
mass of crate, m = 61 kg
μ = 0.27
(a) The magnitude of the frictional force,
f = μ N
where, N is the normal reaction
N = m x g = 61 x 9.81 = 598.41 N
So, the frictional force, f = 0.27 x 598.41
f = 161.57 N
(b) Let a be the acceleration of the crate.
Fnet = F - f = 220 - 161.57
Fnet = 58.43 N
According to newton's second law
Fnet = mass x acceleration
58.43 = 61 x a
a = 0.958 m/s^2
Thus, the acceleration of the crate is 0.958 m/s^2.
Answer:
3.90 degrees
Explanation:
Let g= 9.81 m/s2. The gravity of the 30kg grocery cart is
W = mg = 30*9.81 = 294.3 N
This gravity is split into 2 components on the ramp, 1 parallel and the other perpendicular to the ramp.
We can calculate the parallel one since it's the one that affects the force required to push up
F = WsinΘ
Since customer would not complain if the force is no more than 20N
F = 20



So the ramp cannot be larger than 3.9 degrees
Your grade will probably go down to a D 68% or little higher than that
Answer:
a.3Hz
b.0.0034m
Explanation:
First, we know the flute is an open pipe, because open pipe as both end open and a close organ pipe as only one end close.
The formula relating the length and he frequency is giving as
.
a.we first determine the length of the flute at the fundamental frequency i.e when <em>n</em>=1 and when the speed is in the 342m/s
Hence from
.
since the value of the length will remain constant, we now use the value to determine the frequency when the air becomes hotter and the speed becomes 345m/s.

Hence the require beat is
.
b. since the length is dependent also on the speed and frequency, we determine the new length when she plays with a fundamental frequency when the speed of sound is 345m/s
using the formula
Now to determine the extension,
